Following physical practice, delayed, consolidation-phase, gains in the performance of the trained finger-to-thumb opposition sequence (FOS) can be expressed, in young adults, only after a sleep interval is afforded. These delayed gains are order-of-movements specific. However, in several perceptual learning tasks, time post-learning, rather than an interval of sleep, may suffice for the expression of delayed performance gains. Here we tested whether the affordance of a sleep interval is necessary for the expression of delayed performance gains after FOS training by repeated observation. Participants were trained by observing videos displaying a left hand repeatedly performing a 5-element FOS. To assess post-session observation-related learning and delayed gains participants were tested in performing the observed (trained) and an unobserved (new, the 5-elements mirror-reversed) FOS sequences. Repeated observation of a FOS conferred no advantage to its performance, compared to the unobserved FOS, immediately after practice. However, a clear advantage for the observed FOS emerged by 12 h post-training, irrespective of whether this interval included sleep or not; the largest gains appeared by 24 h post-training. These results indicate that time-dependent, offline consolidation processes take place after observation training even in the absence of sleep; akin to perceptual learning rather than physical FOS practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874966PMC
http://dx.doi.org/10.1038/s41598-024-53004-4DOI Listing

Publication Analysis

Top Keywords

delayed gains
12
observation training
8
training absence
8
fos
8
sleep interval
8
perceptual learning
8
expression delayed
8
delayed performance
8
performance gains
8
repeated observation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!