Background: We present two genetic causes of polyhydramnios that were challenging to diagnose due to their rarity and complexity. In view of the severe implications, we wish to highlight these rare genetic conditions when obstetricians consider differential diagnoses of polyhydramnios in the third trimester.
Case Presentation: Patient 1 is a 34-year-old Asian woman who was diagnosed with polyhydramnios at 28 weeks' gestation. First trimester testing, fetal anomaly scan, and intrauterine infection screen were normal. Subsequent antenatal ultrasound scans revealed macroglossia, raising the suspicion for Beckwith-Wiedemann syndrome. Chromosomal microarray analysis revealed a female profile with no pathological copy number variants. The patient underwent amnioreduction twice in the pregnancy. The patient presented in preterm labor at 34 weeks' gestation but elected for an emergency caesarean section. Postnatally, the baby was noted to have a bell-shaped thorax, coat hanger ribs, hypotonia, abdominal distension, and facial dysmorphisms suggestive of Kagami-Ogata syndrome. Patient 2 is a 30-year-old Asian woman who was diagnosed with polyhydramnios at 30 weeks' gestation. She had a high-risk first trimester screen but declined invasive testing; non-invasive prenatal testing was low risk. Ultrasound examination revealed a macrosomic fetus with grade 1 echogenic bowels but no other abnormalities. Intrauterine infection screen was negative, and there was no sonographic evidence of fetal anemia. She had spontaneous rupture of membranes at 37 + 3 weeks but subsequently delivered by caesarean section in view of pathological cardiotocography. The baby was noted to have inspiratory stridor, hypotonia, low-set ears, and bilateral toe polysyndactyly. Further genetic testing revealed a female profile with a pathogenic variant of the GLI3 gene, confirming a diagnosis of Greig cephalopolysyndactyly syndrome.
Conclusion: These cases illustrate the importance of considering rare genetic causes of polyhydramnios in the differential diagnosis, particularly when fetal anomalies are not apparent at the 20-week structural scan. We would like to raise awareness for these rare conditions, as a high index of suspicion enables appropriate counseling, prenatal testing, and timely referral to pediatricians and geneticists. Early identification and diagnosis allow planning of perinatal care and birth in a tertiary center managed by a multidisciplinary team.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875787 | PMC |
http://dx.doi.org/10.1186/s13256-024-04435-0 | DOI Listing |
Ophthalmol Ther
January 2025
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany.
Introduction: Congenital aniridia is increasingly recognized as part of a complex syndrome with numerous ocular developmental anomalies and non-ocular systemic manifestations. This requires comprehensive care and treatment of affected patients. Our purpose was to analyze systemic diseases in patients with congenital aniridia within the Homburg Aniridia Registry.
View Article and Find Full Text PDFEur J Hum Genet
January 2025
Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.
View Article and Find Full Text PDFHum Genet
January 2025
Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.
There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
Malaria has been a leading cause of death in human populations for centuries and remains a major public health challenge in African countries, especially affecting children. Among the five Plasmodium species infecting humans, Plasmodium falciparum is the most lethal. Ancient DNA research has provided key insights into the origins, evolution, and virulence of pathogens that affect humans.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden.
ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!