Background: Previous studies have confirmed the expression of tissue inhibitor of metalloproteinase-3 (TIMP3) in Müller glia (MG). However, the role of TIMP3 in MG remains unknown.
Methods: A mouse model of laser-induced retinal damage and gliosis was generated using wild-type C57BL/6 mice. TIMP3 and associated proteins were detected using Western blotting and immunofluorescence microscopy. RNA sequencing (GSE132140) of mouse laser-induced gliosis was utilized for pathway analysis. TIMP3 overexpression was induced in human MG. Human vitreous samples were obtained from patients with proliferative diabetic retinopathy (PDR) and healthy controls for protein analysis.
Results: TIMP3 levels increased in mouse eyes after laser damage. Morphology and spatial location of TIMP3 indicated its presence in MG. TIMP3-overexpressing MG showed increased cellular proliferation, migration, and cell nuclei size, suggesting TIMP3-induced gliosis for retinal repair. Glial fibrillary acidic protein (GFAP) and vimentin levels were elevated in TIMP3-overexpressing MG and laser-damaged mouse retinas. RNA sequencing and Western blotting suggested a role for β-catenin in mediating TIMP3 effects on the retina. Human vitreous samples from patients with PDR showed a positive correlation between TIMP3 and GFAP levels, both of which were elevated in patients with PDR.
Conclusions: TIMP3 is associated with MG gliosis to enhance the repair ability of damaged retinas and is mediated by the canonical Wnt/β-catenin. Changes in TIMP3 could potentially be used to control gliosis in a range of retinal diseases However, given the multifaceted nature of TIMP3, care must be taken when developing treatments that aim solely to boost the function of TIMP3.
Funding: National Cheng Kung University Hospital, Taiwan (NCKUH-10604009 and NCKUH-11202007); the Ministry of Science and Technology (MOST 110-2314-B-006-086-MY3).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2024.167087 | DOI Listing |
Clin Epigenetics
December 2024
The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.
J Clin Invest
December 2024
Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
Understanding cell fate regulation in the liver is necessary to advance cell therapies for hepatic disease. Liver progenitor cells (LPC) contribute to tissue regeneration after severe hepatic injury yet signals instructing progenitor cell dynamics and fate are largely unknown. The Tissue Inhibitor of Metalloproteinases, TIMP1 and TIMP3 control the sheddases ADAM10 and ADAM17, key for NOTCH activation.
View Article and Find Full Text PDFElife
December 2024
Department of Biochemistry Stanford University, Stanford, United States.
Targeted low-throughput studies have previously identified subcellular RNA localization as necessary for cellular functions including polarization, and translocation. Furthermore, these studies link localization to RNA isoform expression, especially 3' Untranslated Region (UTR) regulation. The recent introduction of genome-wide spatial transcriptomics techniques enables the potential to test if subcellular localization is regulated in situ pervasively.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, United States. Electronic address:
Kidney fibrosis is a commonly observed pathological condition during development of chronic kidney disease. Therapeutic options currently available are effective only in slowing the progression of kidney fibrosis and there is no cure for this disease. Aberrant expression and excessive accumulation of extracellular matrix (ECM) proteins in the peritubular space is a characteristic pathological feature of fibrotic kidney.
View Article and Find Full Text PDFStem Cells Transl Med
November 2024
Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China.
Endometriosis is a chronic inflammatory and neoangiogenic disease. Endostatin is one of the most effective inhibitors of angiogenesis. Mesenchymal stem cells (MSCs) have been investigated as compelling options for cell therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!