In planta expression of specific single chain fragment antibody (scFv) against nucleocapsid protein of fig mosaic virus (FMV).

J Virol Methods

Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, Valenzano, Bari 70010, Italy.

Published: May 2024

Fig mosaic virus (FMV) is recognized as the main viral agent associated with the mosaic disease (MD) of fig trees (Ficus carica). Due to its worldwide occurrence, FMV represents the most significant global threat to the production of fig fruit. A disease management strategy against the MD in fig orchards has never been effective; and therefore, expression of recombinant antibody in plant cells could provide an alternative approach to suppress FMV infections. In this study we focused on expressing a specific recombinant antibody, a single-chain variable fragment (scFv), targeting the nucleocapsid protein (NP) of FMV in planta. To accomplish this objective, we inserted the scFv gene into a plant expression vector and conducted transient expression in leaves of Nicotiana tabacum cv. Samson plants. The construct was transiently expressed in tobacco plants by agroinfiltration, and antibody of the anticipated size was detected by immunoblotting. The produced plantibody was then assessed for specificity using ELISA and confirmed by Western blot analysis. In this study, the plantibody developed against FMV could be considered as a potential countermeasure to the infection by conferring resistance to MD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2024.114904DOI Listing

Publication Analysis

Top Keywords

nucleocapsid protein
8
fig mosaic
8
mosaic virus
8
virus fmv
8
recombinant antibody
8
fmv
6
fig
5
planta expression
4
expression specific
4
specific single
4

Similar Publications

Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.

View Article and Find Full Text PDF

Background: Sugarcane is cultivated globally and affected by more than 125 pathogens, which lead to various plant diseases. In recent years, high-throughput sequencing (HTS)-based genome analyses have been broadly adopted for the discovery of both characterized and un-characterized viruses from plant samples. In this study, the HTS data of sugarcane pooled sample retrieved from sequence read archive (SRA) were de novo re-assembled using CLC Genomic Workbench.

View Article and Find Full Text PDF

Objectives: We assessed the transmission of SARS-CoV-2 and vaccine receipt in a representative sample of wet market workers in a highly dense, low-income setting. Wet markets are key in many Asian settings, including Dhaka, Bangladesh, for fresh food, including animal protein.

Methods: During early 2022, we assessed the prevalence of anti-SARS-CoV-2 antibodies in a random sample of poultry and vegetable workers in 15 wet markets, and investigated associations with socio-demographic characteristics and COVID-19 vaccination.

View Article and Find Full Text PDF

COVID-19 remains a significant global health problem with uncertain long-term consequences for convalescents. We investigated the relationships between anti-N protein antibody levels, severe acute respiratory syndrome (SARS)-CoV-2-associated TCR repertoire parameters, HLA type and epidemiological information from three cohorts of 524 SARS-CoV-2-infected subjects subgrouped in acute phase, seronegative and seropositive convalescents from the Emilia Romagna region. Epidemiological information and anti-N antibody index were associated with TCR repertoire data.

View Article and Find Full Text PDF

Bovine coronavirus (BCoV), a significant cattle pathogen causing enteric and respiratory diseases, is primarily detected using reverse transcription-polymerase chain reaction. Our objective was to develop a novel detection method for BCoV by matrix-assisted laser desorption/ionization‒time-of-flight mass spectrometry (MALDI-TOF MS). Peptide mass fingerprint analysis revealed that nucleocapsid (N), membrane (M), and hemagglutinin-esterase (HE) were three main BCoV proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!