Mitochondrial and thus cellular energetics are highly regulated both thermodynamically and kinetically. Cellular energetics is of prime importance in the regulation of cellular functions since it provides ATP for their accomplishment. However, cellular energetics is not only about ATP production but also about the ability to re-oxidize reduced coenzymes at a proper rate, such that the cellular redox potential remains at a level compatible with enzymatic reactions. However, this parameter is not only difficult to assess due to its dual compartmentation (mitochondrial and cytosolic) but also because it is well known that most NADH in the cells is bound to the enzymes. In this paper, we investigated the potential relevance of mitochondrial quinones redox state as a marker of mitochondrial metabolism and more particularly mitochondrial redox state. We were able to show that Q is an appropriate redox mediator to assess the mitochondrial quinone redox states. On isolated mitochondria, the mitochondrial quinone redox states depend on the mitochondrial substrate and the mitochondrial energetic state (phosphorylating or not phosphorylating). Last but not least, we show that the quinones redox state response allows to better understand the Krebs cycle functioning and respiratory substrates oxidation. Taken together, our results suggest that the quinones redox state is an excellent marker of mitochondrial metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2024.149033 | DOI Listing |
PLoS One
January 2025
Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.
Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. Electronic address:
The redox state of proteins is essential for their function and guarantees cell fitness. Peroxiredoxins protect cells against oxidative stress, maintain redox homeostasis, act as chaperones, and transmit hydrogen peroxide signals to redox regulators. Despite the profound structural and functional knowledge of peroxiredoxins action, information on how the different functions are concerted is still scarce.
View Article and Find Full Text PDFClin J Am Soc Nephrol
January 2025
Department of Medicine, Division of Nephrology, University of California, Davis, CA, USA.
Background: Mitochondria-driven oxidative/redox stress and inflammation play a major role in chronic kidney disease (CKD) pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD.
Methods: We conducted a pilot randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/day of coenzyme Q10 (CoQ10) or 1000 mg/day of nicotinamide riboside (NR) supplementation to placebo in 25 people with moderate-to-severe CKD (estimated glomerular filtration rate [eGFR] <60mL/min/1.
Small
January 2025
Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India.
The present work reports the synthesis, characterization, and excited state photo-physical studies of two copper(II) compounds, 1 & 2, which show interference-free emission with homocysteine (Hcy). Cu(II) complexes offer an orthogonal detection strategy involving fluorescence and electrochemical methods, paving the way for improved point-of-care diagnostics and early cardiovascular diseases intervention. The reduction-induced emission enhancement (RIEE) of Cu complexes facilitates the fluorescence measurement of Hcy at physiological pH.
View Article and Find Full Text PDFAdv Mater
January 2025
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China.
Electrocatalytic biomass conversion offers a sustainable route for producing organic chemicals, with electrode design being critical to determining reaction rate and selectivity. Herein, a prediction-synthesis-validation approach is developed to obtain electrodes for precise biomass conversion, where the coexistence of multiple metal valence states leads to excellent electrocatalytic performance due to the activated redox cycle. This promising integrated foam electrode is developed via acid-induced surface reconstruction to in situ generate highly active metal (oxy)hydroxide or oxide (MOH or MO) species on inert foam electrodes, facilitating the electrooxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-furandicarboxylic acid (FDCA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!