Background: Shen Shuai Ⅱ Recipe (SSR) is clinically used to treat chronic kidney diseases (CKDs) with remarkable efficacy and safety. In earlier research, we found the anti-inflammatory, antioxidant, and mitochondrial protective properties of SSR in hypoxic kidney injury model, which is closely related to its renal protection. Further work is needed to understand the underlying molecular mechanisms.
Purpose: Further investigation of the mechanisms of action of SSR against renal interstitial fibrosis (RIF) building on previous research leads.
Methods: Rats receiving CKD model surgery were given with Fenofibrate or SSR once a day for eight weeks. In vitro, the NRK-52E cells were treated with SSR in the presence or absence of 10 μM Sc75741, 0.5 μM PMA, or 1 μM fenofibrate under 1% O. The effects of SSR on NF-κB/NLRP3 inflammatory cascade, secretion of pro-inflammatory cytokines, fatty acid oxidation (FAO), and renal tubular injury were determined by immunoblotting, luminex liquid suspension chip assay, transmission electron microscopy, and Oil red O staining. Next, we delivered PPARα-interfering sequences to kidney tissue and NRK-52E cells by adeno-associated virus (AAV) injection and siRNA transfection methods. Finally, we evaluated the effect of renal tubular cells on fibroblast activation by co-culture method.
Results: SSR attenuated the release of IL-18, VEGF, and MCP1 cytokines, inhibited the activation of NF-κB/NLRP3 cascade, increased the PPARα, CPT-1α, CPT-2, ACADL, and MCAD protein expression, and improved the lipid accumulation. Further studies have demonstrated that one of the ways in which SSR suppresses the inflammatory response to protect renal tubular cells is through the restoration of PPARα-mediated FAO. In addition, by means of co-culture ways, the results demonstrated that SSR attenuated secretion of inflammatory mediators in NRK-52E cells by PPARα/NF-κB/NLRP3 pathway, thereby inhibiting renal fibroblast activation.
Conclusion: SSR inhibits RIF by suppressing inflammatory response of hypoxia-exposed RTECs through PPARα-mediated FAO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2024.155450 | DOI Listing |
Front Pharmacol
December 2024
Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Background: The calcium-sensitive receptor (CaSR) has been identified as a key factor in the formation of kidney stones. A substantial body of research has illuminated the function of CaSR in stone formation with respect to oxidative stress, epithelial injury, crystal adhesion, and stone-associated proteins. Nevertheless, as a pivotal molecule in renal calcium excretion, its pathway that contributes to stone formation by regulating calcium supersaturation remains underexplored.
View Article and Find Full Text PDFRen Fail
December 2024
Department of Nephrology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, China.
Objective: This study was recruited to investigate the role of mitophagy in activating NLRP3 inflammasome in the kidney of uric acid (UA) nephropathy (UAN) rats.
Methods: This study developed a uric acid nephropathy (UAN) rat model divided into five groups: Negative control (NC), UAN model (M), UAN + autophagy inhibitor (3-MA), UAN + lysosome inhibitor (CQ), and ROS scavenger (N-acetylcysteine, N). H&E staining assessed renal structure, ROS levels were measured with 2, 7dichlorofluorescin diacetate, and ELISA measured serum markers (, , cystatin , , , ).
J Physiol Pharmacol
October 2024
Department of Clinical Laboratory, Yantaishan Hospital, Yantai City, Shandong Province, 264003, China.
Melatonin (Mel) has been documented to modulate epithelial-mesenchymal transition (EMT) in cellular systems. The interstitial transformation of renal tubular epithelial cells constitutes a key pathogenic mechanism underlying renal fibrosis. This study aims to elucidate the role of Mel in the EMT process of renal tubular epithelial cells.
View Article and Find Full Text PDFDrug Dev Ind Pharm
December 2024
Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P. R. China.
Objectives: Sepsis-associated acute kidney injury (SA-AKI) is a significant clinical challenge with high morbidity and mortality. Low bioavailability of protopanaxadiol (PPD) limits its clinical application. In this study, PPD was encapsulated with chitooligosaccharide (COS) modified polylactic-co-glycolic acid (PLGA) to develop novel nanomedicines for the treatment of SA-AKI.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India. Electronic address:
Ethnopharmacological Relevance: Acute kidney injury (AKI), a global public health concern that increases the risk of death, end-stage renal disease, and prolonged hospital admissions. As of this point, supportive measures like fluid resuscitation and replacement therapy for renal failure are the only treatments available for treating AKI. Asparagus racemosus (AR) also known as Shatavari, belongs to family Liliaceae and is considered exceptional in Ayurvedic medicine due to its versatility in treating and preventing a variety of illnesses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!