Exosomal proteins from the parental cells are considered to be promising biomarker sets for precise tumor diagnostics and monitoring. However, the accurate quantitative analysis of low-abundance exosomal proteins remains challenging due to the heterogeneity of clinical samples. Here, we standardized the exosomal concentration with a fluorogenic membrane probe and developed an aptamer-bivalent-cholesterol-mediated Proximity Entropy-driven Exosomal Protein Reporter (PEEPR). The proposed PEEPR enables the in-situ analysis of multiple exosomal proteins by integrating bivalent cholesterol anchor (exosomal lipid bilayer) and aptamer (exosomal proteins) with a proximity entropy-driven circuit. Based on this strategy, we successfully achieved detection limits of 3.9 pg/mL exosomal GPC-3 and 3.4 pg/mL exosomal PD-L1. Notably, the standardization of exosome concentrations is designed to avoid errors due to biological heterogeneity. The results showed that evaluating the levels of exosomal GPC-3 and PD-L1 in clinical samples via this strategy could accurately differentiate healthy individuals, hepatitis B patients, and hepatocellular carcinoma patients. In summary, PEEPR is a promising clinical diagnostic strategy for the quantitative analysis of a variety of tumor-associated exosomal proteins for the precise diagnosis and personalized treatment monitoring of tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!