Parkinson's disease (PD) and essential tremor (ET) are prevalent movement disorders that mainly affect elderly people, presenting diagnostic challenges due to shared clinical features. While both disorders exhibit distinct speech patterns-hypokinetic dysarthria in PD and hyperkinetic dysarthria in ET-the efficacy of speech assessment for differentiation remains unexplored. Developing technology for automatic discrimination could enable early diagnosis and continuous monitoring. However, the lack of data for investigating speech behavior in these patients has inhibited the development of a framework for diagnostic support. In addition, phonetic variability across languages poses practical challenges in establishing a universal speech assessment system. Therefore, it is necessary to develop models robust to the phonetic variability present in different languages worldwide. We propose a method based on Gaussian mixture models to assess domain adaptation from models trained in German and Spanish to classify PD and ET patients in Czech. We modeled three different speech dimensions: articulation, phonation, and prosody and evaluated the models' performance in both bi-class and tri-class classification scenarios (with the addition of healthy controls). Our results show that a fusion of the three speech dimensions achieved optimal results in binary classification, with accuracies up to 81.4 and 86.2% for monologue and /pa-ta-ka/ tasks, respectively. In tri-class scenarios, incorporating healthy speech signals resulted in accuracies of 63.3 and 71.6% for monologue and /pa-ta-ka/ tasks, respectively. Our findings suggest that automated speech analysis, combined with machine learning is robust, accurate, and can be adapted to different languages to distinguish between PD and ET patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874421 | PMC |
http://dx.doi.org/10.1038/s41746-024-01027-6 | DOI Listing |
Sci Rep
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China.
This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
The ADNI is detailed in Supplemental Acknowledgments.
Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.
Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.
Lancet Neurol
February 2025
Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada; Department of Cognitive Neurology, St Joseph's Health Care London, London, ON, Canada. Electronic address:
Background: No treatments exist for apathy in people with frontotemporal dementia. Previously, in a randomised double-blind, placebo-controlled, dose-finding study, intranasal oxytocin administration in people with frontotemporal dementia improved apathy ratings on the Neuropsychiatric Inventory over 1 week and, in a randomised, double-blind, placebo-controlled, crossover study, a single dose of 72 IU oxytocin increased blood-oxygen-level-dependent signal in limbic brain regions. We aimed to determine whether longer treatment with oxytocin improves apathy in people with frontotemporal dementia.
View Article and Find Full Text PDFCell Chem Biol
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge Cambridge CB2 0XY, UK. Electronic address:
Synaptic dysfunction is a primary hallmark of both Alzheimer's and Parkinson's disease, leading to cognitive and behavioral decline. While alpha-synuclein, beta-amyloid, and tau are involved in the physiological functioning of synapses, their pathological aggregation has been linked to synaptopathology. The methodology for studying the small-soluble protein aggregates formed by these proteins is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!