A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neodymium adsorption from aqueous solution by β-cyclodextrin nanosponges and a polymer valorized from potato peels waste: experiments and conventional and statistical physics interpretations. | LitMetric

Using organic waste and residue streams to be turned into valuable and greener materials for various applications has proven an efficient and suitable strategy. In this work, two green materials (nanosponges and a polymer) were synthesized using potato peels and applied for the first time to adsorb and recover Neodymium (Nd) from aqueous solutions. The recovery of Nd that belongs to the rare earth elements has attracted important interest due to its/their importance in several industrial and technological applications. The fine potato peel waste (FPPW) polymer presented an irregular shape and porous surface. At the same time, the β-cyclodextrin (β-CD) nanosponges had uniform distribution with regular and smooth shapes. β-CD nanosponges exhibited a much higher total carboxyl content (4.02 mmol g) than FPPW (2.50 mmol g), which could impact the Nd adsorption performance because carboxyl groups can interact with cations. The adsorption capacity increased with the increase of the pH, reaching its maximum at pHs 6-7 for β-CD nanosponges and 4-7 for FPPW polymer. The kinetic and equilibrium data were well-fitted by General order and Liu models. β-CD nanosponges attained adsorption capacity near 100 mg Nd per gram of adsorbent. Thermodynamic and statistical physical results corroborated that the adsorption mechanism was due to electrostatic interaction/complexation and that the carboxyl groups were important in the interactions. β-CD nanosponges (three cycles of use) were more effective than FPPW (one cycle of use) in the regeneration. Finally, β-CD nanosponges could be considered an eco-friendly adsorbent to recover Nd from aqueous matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-32473-0DOI Listing

Publication Analysis

Top Keywords

β-cd nanosponges
24
nanosponges
8
nanosponges polymer
8
potato peels
8
fppw polymer
8
carboxyl groups
8
adsorption capacity
8
β-cd
6
neodymium adsorption
4
adsorption aqueous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!