Using organic waste and residue streams to be turned into valuable and greener materials for various applications has proven an efficient and suitable strategy. In this work, two green materials (nanosponges and a polymer) were synthesized using potato peels and applied for the first time to adsorb and recover Neodymium (Nd) from aqueous solutions. The recovery of Nd that belongs to the rare earth elements has attracted important interest due to its/their importance in several industrial and technological applications. The fine potato peel waste (FPPW) polymer presented an irregular shape and porous surface. At the same time, the β-cyclodextrin (β-CD) nanosponges had uniform distribution with regular and smooth shapes. β-CD nanosponges exhibited a much higher total carboxyl content (4.02 mmol g) than FPPW (2.50 mmol g), which could impact the Nd adsorption performance because carboxyl groups can interact with cations. The adsorption capacity increased with the increase of the pH, reaching its maximum at pHs 6-7 for β-CD nanosponges and 4-7 for FPPW polymer. The kinetic and equilibrium data were well-fitted by General order and Liu models. β-CD nanosponges attained adsorption capacity near 100 mg Nd per gram of adsorbent. Thermodynamic and statistical physical results corroborated that the adsorption mechanism was due to electrostatic interaction/complexation and that the carboxyl groups were important in the interactions. β-CD nanosponges (three cycles of use) were more effective than FPPW (one cycle of use) in the regeneration. Finally, β-CD nanosponges could be considered an eco-friendly adsorbent to recover Nd from aqueous matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-32473-0DOI Listing

Publication Analysis

Top Keywords

β-cd nanosponges
24
nanosponges
8
nanosponges polymer
8
potato peels
8
fppw polymer
8
carboxyl groups
8
adsorption capacity
8
β-cd
6
neodymium adsorption
4
adsorption aqueous
4

Similar Publications

Psoriatic arthritis (PsA), a chronic inflammatory disease, mainly affects the joints, with approximately 30% of psoriasis patients eventually developing PsA. Characterized by both innate and adaptive immune responses, PsA poses significant challenges for effective treatment. Recent advances in drug delivery systems have sparked interest in developing novel formulations to improve therapeutic outcomes.

View Article and Find Full Text PDF

Atomistic Structure Investigation of Eu-Doped ZnO Nanosponges.

Inorg Chem

January 2025

Department of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.

Zinc oxide (ZnO) is a semiconductor with a wide range of applications, and often the properties are modified by metal-ion doping. The distribution of dopant atoms within the ZnO crystal strongly affects the optical and magnetic properties, making it crucial to comprehend the structure down to the atomic level. Our study reveals the dopant structure and its contents in Eu-doped ZnO nanosponges with up to 20% Eu-O clusters.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a crucial role in initiating antitumor immune responses. However, in the tumor environment, dendritic cells often exhibit impaired antigen presentation and adopt an immunosuppressive phenotype, which hinders their function and reduces their ability to efficiently present antigens. Here, a dual catalytic oxide nanosponge (DON) doubling as a remotely boosted catalyst and an inducer of programming DCs to program immune therapy is reported.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

The cellular components of the tumor microenvironment (TME) comprise cancer cells and nonmalignant cells including stromal and immune cells. Exosomes are extracellular vesicles secreted by various types of cells that play a crucial role in intercellular communications within TME. The main goal of this study was to elucidate how exosomes of macrophage cells treated with doxorubicin (DOX) and DOX-loaded cyclodextrin-based nanosponges (DOX-CDNSs), affect melanoma cancer cell proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!