Multifunctional amphibious superhydrophilic-oleophobic cellulose nanofiber aerogels for oil and water purification.

Carbohydr Polym

Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province/State Key Laboratory for Bio-Fibers and Eco-Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao 266071, China. Electronic address:

Published: April 2024

Aerogels are of a popular choice for oil-water separation and water purification due to their attractive properties, such as lightweight, large surface area, and high porosity. Developing robust aerogels with multifunctional characteristics is highly desirable but remains challenging nowadays. Herein, we develop a facile one-pot condensation strategy for the fabrication of superhydrophilic-oleophobic (SHI-OP) composite aerogels using cellulose nanofibers (CNF), 3-glycidy-loxypropyl trimethoxysilane (GPTMS), polyethyleneimine (PEI) and fluorine-contained compound (FS-60). The resulted aerogels exhibit a directional lamellar structure with interconnected macropores, super-lightweight with high porosity of 98.30 % and low density of 0.0256 g·cm. Also, the aerogels are mechanically durable against repeated compression. Meanwhile, the amphibious SHI-OP feature of the composite aerogels in both air and water states enables them to not only absorb trace amount of water from contaminated oils, but also separate oil-water mixtures with separation efficiency of over 99 % and high permeation flux of over 9060 L/m·h. Moreover, the aerogels also show excellent dye adsorption capability and reusability toward anionic dyes with a maximum adsorption capacity of 1245.68 mg/g. Such robust and multifunctional aerogels with special surface wettability provide good opportunity for liquid purification and dye-containing wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121774DOI Listing

Publication Analysis

Top Keywords

aerogels
9
water purification
8
high porosity
8
composite aerogels
8
multifunctional amphibious
4
amphibious superhydrophilic-oleophobic
4
superhydrophilic-oleophobic cellulose
4
cellulose nanofiber
4
nanofiber aerogels
4
aerogels oil
4

Similar Publications

Activated Graphite with Richly Oxygenated Surface from Spent Lithium-Ion Batteries for Microwave Absorption.

Small

January 2025

School of Materials and Physics & Center of Mineral Resource Waste Recycling, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.

Designing spent graphite anodes from lithium-ion batteries (LIBs) for applications beyond regenerated batteries offers significant potential for promoting the recycling of spent LIBs. The battery-grade graphite, characterized by a highly graphitized structure, demonstrates excellent conductive loss capabilities, making it suitable for microwave absorption. During the Li-ion intercalation and deintercalation processes in battery operation, the surface layer of spent graphite (SG) becomes activated, forming oxygen-rich functional groups that enhance the polarization loss mechanism.

View Article and Find Full Text PDF

Ultralight and Flexible Subnanowire Aerogels for Intrinsically Hydrophobic Thermal Insulation.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.

Aerogels are regarded as the next generation of thermal insulators; however, conventional aerogels suffer from issues such as brittleness, low moisture resistance, and a complex production process. Subnanowires (SNWs) are emerging materials known for their exceptional flexibility, toughness, intrinsic hydrophobicity, and gelling capabilities, making them ideal building blocks for flexible, tough, hydrophobic, and thermally insulating aerogels. Herein, we present a simple and scalable strategy to construct SNW aerogels by freeze-drying hydroxyapatite (HAP) SNW dispersions in cyclohexane.

View Article and Find Full Text PDF

This study focused on fabricating a cellulose aerogel for oil spill clean-up, using common reed () as the cellulose source. The process involved isolating cellulose from reed via traditional Kraft pulping, considering the effects of key factors on the isolated cellulose content. After a two-stage HP bleaching sequence, the highest cellulose content achieved was 27.

View Article and Find Full Text PDF

Highly compressible lamellar graphene/cellulose/sodium alginate aerogel via bidirectional freeze-drying for flexible pressure sensor.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!