Plakoglobin regulates adipocyte differentiation independently of the Wnt/β-catenin signaling pathway.

Biochim Biophys Acta Mol Cell Res

Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada. Electronic address:

Published: April 2024

The scaffold protein 14-3-3ζ is an established regulator of adipogenesis and postnatal adiposity. We and others have demonstrated the 14-3-3ζ interactome to be diverse and dynamic, and it can be examined to identify novel regulators of physiological processes, including adipogenesis. In the present study, we sought to determine if factors that influence adipogenesis during the development of obesity could be identified in the 14-3-3ζ interactome found in white adipose tissue of lean or obese TAP-tagged-14-3-3ζ overexpressing mice. Using mass spectrometry, differences in the abundance of novel, as well as established, adipogenic factors within the 14-3-3ζ interactome could be detected in adipose tissues. One novel candidate was revealed to be plakoglobin, the homolog of the known adipogenic inhibitor, β-catenin, and herein, we report that plakoglobin is involved in adipocyte differentiation. Plakoglobin is expressed in murine 3T3-L1 cells and is primarily localized to the nucleus, where its abundance decreases during adipogenesis. Depletion of plakoglobin by siRNA inhibited adipogenesis and reduced PPARγ2 expression, and similarly, plakoglobin depletion in human adipose-derived stem cells also impaired adipogenesis and reduced lipid accumulation post-differentiation. Transcriptional assays indicated that plakoglobin does not participate in Wnt/β-catenin signaling, as its depletion did not affect Wnt3a-mediated transcriptional activity. Taken together, our results establish plakoglobin as a novel regulator of adipogenesis in vitro and highlights the ability of using the 14-3-3ζ interactome to identify potential pro-obesogenic factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2024.119690DOI Listing

Publication Analysis

Top Keywords

14-3-3ζ interactome
16
plakoglobin
8
adipocyte differentiation
8
wnt/β-catenin signaling
8
regulator adipogenesis
8
adipogenesis reduced
8
adipogenesis
7
14-3-3ζ
5
plakoglobin regulates
4
regulates adipocyte
4

Similar Publications

RNA velocities and generalizations emerge as powerful approaches for extracting time-resolved information from high-throughput snapshot single-cell data. Yet, several inherent limitations restrict applying the approaches to genes not suitable for RNA velocity inference due to complex transcriptional dynamics, low expression, or lacking splicing dynamics, or data of non-transcriptomic modality. Here, we present GraphVelo, a graph-based machine learning procedure that uses as input the RNA velocities inferred from existing methods and infers velocity vectors lying in the tangent space of the low-dimensional manifold formed by the single cell data.

View Article and Find Full Text PDF

Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.

View Article and Find Full Text PDF

Mouse-derived Synaptosomes Trypsin Cleavage Assay to Characterize Synaptic Protein Sub-localization.

Bio Protoc

January 2025

Department of Structural Interactomics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.

Neurons communicate through neurotransmission at highly specialized junctions called synapses. Each neuron forms numerous synaptic connections, consisting of presynaptic and postsynaptic terminals. Upon the arrival of an action potential, neurotransmitters are released from the presynaptic site and diffuse across the synaptic cleft to bind specialized receptors at the postsynaptic terminal.

View Article and Find Full Text PDF

Background: Telomere length is an important indicator of biological age and a complex multi-factor trait. To date, the telomere interactome for comprehending the high-dimensional biological aspects linked to telomere regulation during childhood remains unexplored. Here we describe the multi-omics signatures associated with childhood telomere length.

View Article and Find Full Text PDF

Activation of the p38 mitogen-activated protein kinase (MAPK) pathways is vital in regulating cell growth, differentiation, apoptosis, and stress response, significantly affecting tumorigenesis and cancer progression. We developed a bioinformatic technique to construct an interactome network-based molecular pathways for genes of interest and quantify their activation levels using high-throughput gene expression data. This study is focused on the p38α, p38β, p38γ, and p38δ kinases, examining their activation levels (PALs) based on transcriptomic data and their associations with survival and drug responsiveness across various cancer types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!