A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Implementation of a GEOAI model to assess the impact of agricultural land on the spatial distribution of PM2.5 concentration. | LitMetric

Air pollution is considered one of the major environmental risks to health worldwide. Researchers are making significant efforts to study it, thanks to state-of-art technologies in data collection and processing, and to mitigate its effect. In this context, while a lot is known about the role of urbanization, industries, and transport, the impact of agricultural activities on the spatial distribution of pollution is less studied, despite knowledge about emissions suggest it is not a secondary factor. Therefore, the aim of this study was to assess this impact, and to compare it with that of traditional polluting sources, harvesting the capabilities of GEOAI (Geomatics and Earth Observation Artificial Intelligence). The analysis targeted the highly polluted territory of Lombardy, Italy, considering fine particulate matter (PM2.5). PM2.5 data were obtained from the Copernicus-Atmosphere-Monitoring-Service and processed to infer time-invariant spatial parameters (frequency, intensity and exposure) of concentration across the whole period. An ensemble architecture was implemented, with three blocks: correlation-based features selection, Multiscale-Geographically-Weighted-Regression for spatial enhancement, and a final random forest classifier. Finally, the SHapley Additive exPlanation algorithm was applied to compute the relevance of the different land-use classes on the model. The impact of land-use classes was found significantly higher compared to other published models, showing that the insignificant correlations found in the literature are probably due to an unfit experimental setup. The impact of agricultural activities on the spatial distribution of PM2.5 concentration was comparable to the other considered sources, even when focusing only on the most densely inhabited urban areas. In particular, the agriculture's contribution resulted in pollution spikes rather than in a baseline increase. These results allow to state that public policymakers should consider also agricultural activities for evidence-based decision-making about pollution mitigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141438DOI Listing

Publication Analysis

Top Keywords

impact agricultural
12
spatial distribution
12
agricultural activities
12
assess impact
8
distribution pm25
8
pm25 concentration
8
activities spatial
8
land-use classes
8
impact
5
spatial
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!