Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Malus 'Pinkspire' is regulated by abscisic acid (ABA), which results in a red colour, but the regulatory relationship between ABA and anthocyanin synthesis has not been determined. The key factors affecting the colour change of M. 'Pinkspire' peel were investigated during the periods of significant colour changes during fruit ripening. The results showed that the transcription factor MpbZIP9 associated with ABA was screened by transcriptomic analysis. MpbZIP9 expression was consistent with the trend of structural genes expression for anthocyanin synthesis in the peel during fruit ripening, as well as with changes in the content of ABA, which is a positive regulator. A yeast one-hybrid assay showed that MpbZIP9 can directly bind to the promoter of MpF3'H. Dual luciferase reporter gene assays and GUS staining experiments showed that MpbZIP9 significantly activate MpF3'H expression. In addition, overexpression of the MpbZIP9 significantly enhanced anthocyanin accumulation and the expression of genes involved in anthocyanin synthesis. In contrast, virus-induced silencing of the MpbZIP9 significantly reduced the expression of structural genes involved in anthocyanin synthesis. These results suggest that the MpbZIP9 transcription factor can regulate the synthesis of peel anthocyanin and is a positive regulator that promotes anthocyanin biosynthesis by activating MpF3'H expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2024.112038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!