The suitability of iron-based nanomaterials or composites for in-situ remediation hinges on their physicochemical stability. Introducing surface modifications like metal doping or polymer grafting can regulate interparticle forces, influencing particle stability. Thus, probing how grafting methods (i.e., pre- or post-grafting) tune material properties controlling interparticle forces, comprehend the synergistic effect of metal doping and polymer grafting, and evaluate stability under varying geochemical conditions are the way forward in designing sustainable remediation strategies. To this end, time-dependent sedimentation, dissolution, and aggregation of four synthesized iron-based nanoparticles (bare iron (Fe), copper doped bimetallic iron/copper (Fe/Cu), pre- and post-grafted Fe/Cu with carboxymethyl cellulose (CMC) - CMC-Fe/Cu and CMC-Fe/Cu, respectively) were carried out as a function of solution chemistry (i.e., pH - 5 to 10, ionic strength, IS - 0 to 100 mM NaCl, initial particle concentration, C-20 to 200 mg.L) mimicking geoenvironmental conditions. CMC-Fe/Cu exhibited markedly higher particle availability (> 91 %) against sedimentation than others (bare Fe/Cu (11.28 %) > bare Fe (7.33 %) > CMC-Fe/Cu (6.09 %)) - suggesting the pivotal role of grafting method on particle stability. XDLVO energy profiles revealed pre-grafting altered magnetic properties favoring surface charge-driven electrostatic repulsion over magnetic attraction, thereby limiting aggregation-induced particle settling. In contrast, superior magnetic force overrides the electrostatic behavior for bare and post-grafted particles. Unlike bare and post-grafted nanoparticles, CMC-Fe/Cu aggregate size correlated positively with [H] and IS, consistent with their settling behavior. Rise in C showed a visible negative effect on particle aggregation and, thereby, sedimentation except for CMC-Fe/Cu by facilitating particle collision through Brownian movement. Both acidic pH and copper doping promoted nanoparticle dissolution, whereas pre-grafting can provide a plausible solution against nanoparticle toxicity and loss of reactivity due to ionic release. To recapitulate, these findings are imperative in building a sustainable framework for environmental remediation application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.170966 | DOI Listing |
Luminescence
January 2025
Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf, Saudi Arabia.
In the present study, a norfloxacin (NFX) fluorescent probe was tailored for the spectrofluorometric measurement of cefepime (CFP). The proposed approach measured the quenching effect of CFP on the fluorescence intensity of NFX in acetate buffer solution. The obtained results show that CFP strongly quenches the fluorescence of NFX in a static mechanism.
View Article and Find Full Text PDFChemistry
January 2025
University of Hyderabad School of Chemistry, School of Chemistry, School of Chemistry, University of Hyderabad, 500046, Hyderabad, INDIA.
The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical. A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical. This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.
View Article and Find Full Text PDFChem Asian J
January 2025
IISc: Indian Institute of Science, Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, 560012, Bangalore, INDIA.
In this study, we report the design and development of a stable fluorescent probe that is selectively localized in the cytosol of Hela cells. We designed two probes, 1 and 2, with D-π-A (carbazole (Cbz)-vinyl-naphthalimide (NPI)) and A-π-D-π-A (NPI-vinyl-Cbz-vinyl-NPI) architecture, respectively. Probes 1 and 2 exhibit broad photoluminescence (PL) spectra ranging from green (550 nm) to far-red (800 nm) in solutions and aggregated states.
View Article and Find Full Text PDFLuminescence
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston. (B.C.-C., N.A.V.G., N.L.P., L.P.E., V.S.K.S., A.M.O., J.L., G.M., O.H., A.D., S.W.Y., C.A.I., K.C.O.M., S. Kotla, J.-i.A.).
Modulating immune function is a critical strategy in cancer and atherosclerosis treatments. For cancer, boosting or maintaining the immune system is crucial to prevent tumor growth. However, in vascular disease, mitigating immune responses can decrease inflammation and slow atherosclerosis progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!