Porous structures are frequently used in surgical implants to strengthen the interlocking power produced by bone ingrowth. Therefore, we aimed to elucidate the mechanism underlying bone ingrowth into a porous structure accompanied by vascularization. A nonbioactive polyetheretherketone implant with a 3D-printed porous structure was prepared and implanted in a bone hole created in the tibias of rabbits. We observed bone ingrowth in the same individual specimens immediately and at 2, 4, 8, and 12 weeks post-implantation using in-vivo computed tomography (CT). Furthermore, a detailed evaluation with blood vessels of each specimen at 2, 4, and 12 weeks was performed with ex-vivo CT and histological specimen. Additional histological evaluation was performed using thin sections of an implant made with thermoplastic polyurethane having the same structure. As a result, the bone invasion began after four weeks, when the construction of fibrous tissue and the spread of new blood vessels within the voids matured. As the bone matured in the load-bearing area, new blood vessels outside the bone matrix regressed. This longitudinal evaluation study suggests that preceding fibrogenesis and vascularization may be key in developing bone ingrowth. STATEMENT OF SIGNIFICANCE: A porous structure is an essential structure for dental and orthopedic implants because it provides strong fixation through bone invasion. Although it was known that vascularization was involved in this, the details were not known. This in vivo study revealed that in order for bone ingrowth to begin, a preparatory period of approximately 4 weeks was required to establish blood flow inside and outside the implant. Furthermore, it was confirmed that by spreading the fibrous structure in advance, it has an advantageous effect on the migration of cells involved in the formation of bones and blood vessels. We pointed out that it is necessary to consider fibrogenesis and vascularization when creating future implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.02.016DOI Listing

Publication Analysis

Top Keywords

bone ingrowth
24
porous structure
16
blood vessels
16
fibrogenesis vascularization
12
bone
11
ingrowth porous
8
preceding fibrogenesis
8
bone invasion
8
structure
7
porous
5

Similar Publications

Patient-specific flanged acetabular components are utilized to treat failed total hip arthroplasties with severe acetabular defects. We previously developed and published a finite element model that investigated the impact of hip joint center lateralization on construct biomechanics during gait conditions. This model consisted of a patient-specific implant designed to address a superior-medial defect created in a standard pelvic geometry.

View Article and Find Full Text PDF

Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration.

Calcif Tissue Int

January 2025

Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.

There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.

View Article and Find Full Text PDF

Neuronal guidance factor Sema3A inhibits neurite ingrowth and prevents chondrocyte hypertrophy in the degeneration of knee cartilage in mice, monkeys and humans.

Bone Res

January 2025

The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.

Osteoarthritis (OA) is a degenerative joint disease accompanied with the loss of cartilage and consequent nociceptive symptoms. Normal articular cartilage maintains at aneural state. Neuron guidance factor Semaphorin 3A (Sema3A) is a membrane-associated secreted protein with chemorepulsive properties for axons.

View Article and Find Full Text PDF

Injectable Polyhydroxyalkanoate-Nano-Clay Microcarriers Loaded with r-BMSCs Enhance the Repair of Cranial Defects in Rats.

Int J Nanomedicine

December 2024

Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.

Purpose: Successful regeneration of cranial defects necessitates the use of porous bone fillers to facilitate cell proliferation and nutrient diffusion. Open porous microspheres, characterized by their high specific surface area and osteo-inductive properties, offer an optimal microenvironment for cell ingrowth and efficient ossification, potentially accelerating bone regeneration.

Materials And Methods: An in vitro investigation was conducted to assess the physicochemical properties, porosity, and biocompatibility of PHA-nano-clay open porous microspheres.

View Article and Find Full Text PDF

Bone Ingrowth Simulation Within the Hexanoid, a Novel Scaffold Design.

3D Print Addit Manuf

December 2024

Orthopedics Program, Herston Biofabrication Institute, Block 7 Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.

The utilization of bone scaffold implants represents a promising approach for repairing substantial bone defects. In recent years, various traditional scaffold structures have been developed and, with advances in materials biology and computer technology, novel scaffold designs are now being evaluated. This study investigated the effects of a novel scaffold unit cell design (Hexanoid) through a computational framework, comparing its performance to that of four well-known scaffold designs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!