NaMnSiO/C as hybrid capacitive deionization electrode material to enhance desalination performance.

J Colloid Interface Sci

University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, PR China. Electronic address:

Published: May 2024

The utilization of NaMnSiO as a Faraday electrode in hybrid capacitive deionization (HCDI) is investigated to achieve efficient desalination. The NaMnSiO/C (NMSO) materials were fabricated via a simple sol-gel method, in which the synthesis process was modulated by adjusting the volume ratio of ethanol to water. When maintaining the volume ratio of water to ethanol at 3:1, the resultant NMSO-3/1 exhibited expected salt adsorption capacity of 31.06 mg g and salt adsorption rate of 20.43 mg g min. This distinguished desalination performance was mainly attributed to its inherent multiple redox pairs, as well as the integration of ethanol, which enhanced both specific capacitance and hydrophilicity of the material. This study opens a new perspective for the development of highly efficient materials in HCDI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.02.061DOI Listing

Publication Analysis

Top Keywords

hybrid capacitive
8
capacitive deionization
8
desalination performance
8
volume ratio
8
salt adsorption
8
namnsio/c hybrid
4
deionization electrode
4
electrode material
4
material enhance
4
enhance desalination
4

Similar Publications

In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China. Electronic address:

Porous carbons with large surface area (>3000 m/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons.

View Article and Find Full Text PDF

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

It is challenging to handle heavy-metal-rich plants that grow in contaminated soil. The role of heavy metals in biomass on the physicochemical structure and electrochemical properties of their derived carbon has not been considered in previous research. In this study, Cu-ion hybrid nanoporous carbon (CHNC) is prepared from Cu content-contaminated biomass through subcritical hydrocharization (HTC) coupling pyrolytic activation processes.

View Article and Find Full Text PDF

Transition Metal-Mediated Preparation of Nitrogen-Doped Porous Carbon for Advanced Zinc-Ion Hybrid Capacitors.

Nanomaterials (Basel)

January 2025

Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.

Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing.

View Article and Find Full Text PDF

Supercapacitors are advanced energy storage devices renowned for their rapid energy delivery and long operational lifespan, making them indispensable across various industries. Their relevance has grown in recent years due to the adoption of environmentally friendly materials. One such material is bacterial nanocellulose (BNC), produced entirely from microbial sources, offering sustainability and a bioprocess-driven synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!