This paper addresses the critical environmental issue of effectively managing construction and demolition waste (CDW), which has seen a global surge due to rapid urbanization. With the advent of deep learning-based computer vision, this study focuses on improving intelligent identification of valuable recyclables from cluttered and heterogeneous CDW streams in material recovery facilities (MRFs) by optimally leveraging both visual and spatial features (depth). A high-quality CDW RGB-D dataset was curated to capture MRF stream complexities often overlooked in prior studies, and comprises over 3500 images for each modality and more than 160,000 dense object instances of diverse CDW materials with high resource value. In contrast to former studies which directly concatenate RGB and depth features, this study introduces a new depth fusion strategy that utilizes computationally efficient convolutional operations at the end of the conventional waste segmentation architecture to effectively fuse colour and depth information. This avoids cross-modal interference and maximizes the use of distinct information present in the two different modalities. Despite the high clutter and diversity of waste objects, the proposed RGB-DL architecture achieves a 13% increase in segmentation accuracy and a 36% reduction in inference time when compared to the direct concatenation of features. The findings of this study emphasize the benefit of effectively incorporating geometrical features to complement visual cues. This approach helps to deal with the cluttered and varied nature of CDW streams, enhancing automated waste recognition accuracy to improve resource recovery in MRFs. This, in turn, promotes intelligent solid waste management for efficiently managing environmental concerns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.120313 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!