To interfere the Menin-MLL interaction using small molecular inhibitors has been shown as new treatment of several special hematological malignancies. Herein, a series of Menin-MLL interaction inhibitors with pyrrolo[2,3-d]pyrimidine scaffold were designed, synthesized and evaluated. Among them, compound A6 exhibited potent binding affinity with an IC value of 0.38 μM, and strong anti-proliferative activity against MV4-11 cells with an IC value of 1.07 μM. Further study showed A6 reduced the transcriptional levels of HOXA9 and MEIS1 genes. Moreover, A6 induced cellular apoptosis, arrested the cell cycle in G0/G1 phase, and reversed the differentiation arrest in a concentration-dependent manner. This study suggested compound A6 was as a novel potent Menin-MLL interaction inhibitor, and it proved that introduction of 4-amino pyrrolo[2,3-d]pyrimidine to occupy the P10 hydrophobic pocket was new idea for design of novel Menin-MLL interaction inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2024.116226DOI Listing

Publication Analysis

Top Keywords

menin-mll interaction
16
interaction inhibitors
12
interaction
5
discovery novel
4
novel pyrrolo[23-d]pyrimidines
4
pyrrolo[23-d]pyrimidines potent
4
potent menin-mixed
4
menin-mixed lineage
4
lineage leukemia
4
leukemia interaction
4

Similar Publications

Menin-MLL protein-protein interaction inhibitors: a patent review (2021-present).

Expert Opin Ther Pat

January 2025

School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.

Introduction: Acute leukemia harboring rearrangement of the Mixed lineage leukemia (MLL) and/or mutation of the nucleophosmin is a type of poorly prognostic and highly malignant leukemia which is extremely difficult to treat. Blocking the protein-protein interaction between Menin and MLL is a strategic approach for treating leukemias, as a new direction for drug discovery. Many biotech and pharmaceutical companies made great efforts to this drug development field, and a large number of small molecular Menin-MLL PPI inhibitors were reported during the recent three years.

View Article and Find Full Text PDF

Design and development of a series of 4-(piperazin-1-yl)pyrimidines as irreversible menin inhibitors.

Eur J Med Chem

December 2024

Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China. Electronic address:

Article Synopsis
  • * Researchers created a new series of irreversible menin inhibitors, with compound 37 being the standout candidate, showing selectivity and potency against leukemic cells expressing MLL fusion proteins.
  • * Compound 37 works through a unique mechanism by reducing menin protein levels and downregulating its gene transcription, potentially overcoming resistance to current menin inhibitors and demonstrating promising effects in further studies.
View Article and Find Full Text PDF

Functional genomic screens in two-dimensional cell culture models are limited in identifying therapeutic targets that influence the tumor microenvironment. By comparing targeted CRISPR-Cas9 screens in a two-dimensional culture with xenografts derived from the same cell line, we identified MEN1 as the top hit that confers differential dropout effects in vitro and in vivo. MEN1 knockout in multiple solid cancer types does not impact cell proliferation in vitro but significantly promotes or inhibits tumor growth in immunodeficient or immunocompetent mice, respectively.

View Article and Find Full Text PDF

Menin inhibitors that disrupt the menin-MLL interaction hold promise for treating specific acute myeloid leukemia (AML) subtypes, including those with KMT2A rearrangements (KMT2A-r), yet resistance remains a challenge. Here, through systematic chromatin-focused CRISPR screens, along with genetic, epigenetic, and pharmacologic studies in a variety of human and mouse KMT2A-r AML models, we uncovered a potential resistance mechanism independent of canonical menin-MLL targets. We show that a group of noncanonical menin targets, which are bivalently cooccupied by active menin and repressive H2AK119ub marks, are typically downregulated after menin inhibition.

View Article and Find Full Text PDF

Key gene mutations are essential for colorectal cancer (CRC) development; however, how the mutated tumor cells impact the surrounding normal cells to promote tumor progression has not been well defined. Here, we report that PIK3CA mutant tumor cells transmit oncogenic signals and result in malignant transformation of intestinal epithelial cells (IECs) via paracrine exosomal arachidonic acid (AA)-induced H3K4 trimethylation. Mechanistically, PIK3CA mutations sustain SGK3-FBW7-mediated stability of the cPLA2 protein, leading to the synthetic increase in AA, which is transported through exosome and accumulated in IECs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!