A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep degradation of atrazine in water using co-immobilized laccase-1-hydroxybenzotriazole-Pd as composite biocatalyst. | LitMetric

Deep degradation of atrazine in water using co-immobilized laccase-1-hydroxybenzotriazole-Pd as composite biocatalyst.

J Hazard Mater

State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China.

Published: April 2024

The efficient and green removal technology of refractory organics such as atrazine in water has been an important topic of research in water treatment. A novel membrane composite biocatalyst Lac-HBT-Pd/BC as prepared for the first time by co-immobilizing laccase, mediator 1-hydroxybenzotriazole (HBT) and metal Pd on functionalized bacterial cellulose (BC) to investigate the removal of atrazine and degradation of its intermediates under mild ambient conditions. It was found that atrazine could be completely degraded in 5 h by the catalysis of Lac-HBT-Pd/BC, and the removal rate of degradation intermediates from atrazine was about 85% after continuous catalysis, which achieved deep degradation of atrazine. The effect of electrochemical activity and radical stability of the membrane composite biocatalysts loaded with Pd was investigated. The possible degradation pathways were proposed by identifying and analyzing the deep degradation products of atrazine. The Lac-HBT-Pd/BC demonstrated deep degradation of atrazine and favorable reusability as well as considerable adaptability to various water qualities. This work provides an important reference for preparing new kinds of biocatalysts to degrade refractory organic pollutants in water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133779DOI Listing

Publication Analysis

Top Keywords

deep degradation
16
degradation atrazine
12
atrazine
8
atrazine water
8
composite biocatalyst
8
membrane composite
8
degradation intermediates
8
degradation
6
water
5
deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!