Despite the significant progress made in recent years, clinical issues with small-diameter vascular grafts related to low mechanical strength, thrombosis, intimal hyperplasia, and insufficient endothelialization remain unresolved. This study aims to design and fabricate a core-shell fibrous small-diameter vascular graft by co-axial electrospinning process, which will mechanically and biologically meet the benchmarks for blood vessel replacement. The presented graft (PGHV) comprised polycaprolactone/gelatin (shell) loaded with heparin-VEGF and polycaprolactone (core). This study hypothesized that the shell structure of the fibers would allow rapid degradation to release heparin-VEGF, and the core would provide mechanical strength for long-term application. Physico-mechanical evaluation, in vitro biocompatibility, and hemocompatibility assays were performed to ensure safe in vivo applications. After 25 days, the PGHV group released 79.47 ± 1.54% of heparin and 86.25 ± 1.19% of VEGF, and degradation of the shell was observed but the core remained pristine. Both the control (PG) and PGHV groups demonstrated robust mechanical properties. The PGHV group showed excellent biocompatibility and hemocompatibility compared to the PG group. After four months of rat aorta implantation, PGHV exhibited smooth muscle cell regeneration and complete endothelialization with a patency rate of 100%. The novel core-shell structured graft could be pivotal in vascular tissue regeneration application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2024.122507 | DOI Listing |
Biomaterials
December 2024
Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China. Electronic address:
The development of small-diameter vascular grafts (SDVGs) still faces significant challenges, particularly in overcoming blockages within vessels. A key issue is the foreign-body response (FBR) triggered by the implants, which impairs the integration between grafts and native vessels. In this study, we applied an interfacial infiltration strategy to create a stable, hydrophilic, and passivated hydrogel coating on SDVGs.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Department of Biomedical Engineering, The University of Utah, 36 S Wasatch Dr, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX, 77843, USA; Scientific Computing and Imaging Institute, The University of Utah, 72 Central Campus Dr, Salt Lake City, UT, 84112, USA; School of Engineering Medicine, Texas A&M University, 1020 Holcombe Blvd., Houston, TX, 77030, USA; Department of Multidisciplinary Engineering, Texas A&M University, 101 Bizzell St, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Academic Institute, 6565 Fannin Street, Houston, TX, 77030, USA. Electronic address:
The failure of synthetic small-diameter vascular grafts has been attributed to a mismatch in the compliance between the graft and native artery, driving mechanisms that promote thrombosis and neointimal hyperplasia. Additionally, the buckling of grafts results in large deformations that can lead to device failure. Although design features can be added to lessen the buckling potential (e.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053,China. Electronic address:
In clinical practice, the demand for functional small-diameter vascular grafts continues to increase. In this study, a decellularized aorta artery was inserted into a poly(caprolactone) (PCL) vascular scaffold for self-assembly in-vitro to create a hybrid scaffold. The hybrid scaffold was then implanted subcutaneously into the dorsal flanks and the subcutaneous extracellular matrix was applied for bilayer adhesion.
View Article and Find Full Text PDFSoft Matter
December 2024
Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
Bioact Mater
March 2025
Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!