A Comprehensive Review of Therapeutic Compounds from Plants for Neurodegenerative Diseases.

Curr Med Chem

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur - 603 203, Tamil Nadu, India.

Published: February 2024

Neurodegenerative diseases (NDDs) comprise a large number of disorders that affect the structure and functions of the nervous system. The major cause of various neurodegenerative diseases includes protein aggregation, oxidative stress and inflammation. Over the last decade, there has been a gradual inclination of neurological research in order to find drugs that can prevent, slow down, or treat these diseases. The most common NDDs are Alzheimer's, Parkinson's, and Huntington's illnesses which claims the lives of 6.8 million people worldwide each year and it is expected to rise by 7.1%. The focus on alternative medicine, particularly plant-based products, has grown significantly in recent years. Plants are considered a good source of biologically active molecules and hence phytochemical screening of plants will pave the way for discovering new drugs. Neurodegeneration has long been linked to oxidative stress, either as a direct cause or as a side effect of other variables. Therefore, it has been proposed that the use of antioxidants to combat cellular oxidative stress within the nervous system may be a viable therapeutic strategy for neurological illnesses. In order to prevent and treat NDDs, this review article covers the therapeutic compounds/ metabolites from plants with the neuroprotective role. However, these exhibit other beneficial molecular functions in addition to antioxidant activity is the potential application in the management or prevention of neurodegenerative disorders. Further, it gives future researchers the significance of considering peptide-based therapeutics through various mechanisms in delaying or curing neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0109298673272435231204072922DOI Listing

Publication Analysis

Top Keywords

neurodegenerative diseases
16
oxidative stress
12
nervous system
8
neurodegenerative
5
diseases
5
comprehensive review
4
review therapeutic
4
therapeutic compounds
4
plants
4
compounds plants
4

Similar Publications

Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.

View Article and Find Full Text PDF

Progressive supranuclear palsy: an updated approach on diagnosis, treatment, risk factors and outlook in Mexico.

Gac Med Mex

January 2025

Laboratorio de Reprogramación Celular y Enfermedades Crónico-Degenerativas, Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Progressive supranuclear palsy (PSP) is a rare, atypical parkinsonism, characterized by the presence of intracerebral tau protein aggregates and determined by a wide spectrum of clinical features. The definitive diagnosis is postmortem and is identified through the presence of neuronal death, gliosis, and aggregates of the tau protein presented in the form of neurofibrillary tangles (MNF) with a globose appearance in regions such as the subthalamic nucleus, the substantia nigra, and the globus pallidus The findings in ancillary imaging studies, as well as fluids biomarkers, are not sufficient to support diagnosis of PSP but are used to rule out similar pathologies because there are still no specific or validated biomarkers for this disease. The current treatment of PSP is focused on reducing symptoms, although emerging therapies seek to counteract its pathophysiological mechanisms.

View Article and Find Full Text PDF

Background: The prompt and accurate identification of mild cognitive impairment (MCI) is crucial for preventing its progression into more severe neurodegenerative diseases. However, current diagnostic solutions, such as biomarkers and cognitive screening tests, prove costly, time-consuming, and invasive, hindering patient compliance and the accessibility of these tests. Therefore, exploring a more cost-effective, efficient, and noninvasive method to aid clinicians in detecting MCI is necessary.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.

View Article and Find Full Text PDF

This review investigates the intricate relationship between exercise, brain-derived neurotrophic factor (BDNF), neuroplasticity, and cognitive function, with a focus on implications for neuropsychiatric and neurodegenerative disorders. A systematic review was conducted by searching various databases for relevant studies that explored the connections between exercise, BDNF, neuroplasticity, and cognitive health. The analysis of eligible studies revealed that exercise increases BDNF levels in the brain, promoting neuroplasticity and enhancing cognitive functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!