The IRAK1/IRF5 axis initiates IL-12 response by dendritic cells and control of Toxoplasma gondii infection.

Cell Rep

Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

Published: February 2024

Activation of endosomal Toll-like receptor (TLR) 7, TLR9, and TLR11/12 is a key event in the resistance against the parasite Toxoplasma gondii. Endosomal TLR engagement leads to expression of interleukin (IL)-12 via the myddosome, a protein complex containing MyD88 and IL-1 receptor-associated kinase (IRAK) 4 in addition to IRAK1 or IRAK2. In murine macrophages, IRAK2 is essential for IL-12 production via endosomal TLRs but, surprisingly, Irak2 mice are only slightly susceptible to T. gondii infection, similar to Irak1 mice. Here, we report that upon T. gondii infection IL-12 production by different cell populations requires either IRAK1 or IRAK2, with conventional dendritic cells (DCs) requiring IRAK1 and monocyte-derived DCs (MO-DCs) requiring IRAK2. In both populations, we identify interferon regulatory factor 5 as the main transcription factor driving the myddosome-dependent IL-12 production during T. gondii infection. Consistent with a redundant role of DCs and MO-DCs, mutations that affect IL-12 production in both cell populations show high susceptibility to infection in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559090PMC
http://dx.doi.org/10.1016/j.celrep.2024.113795DOI Listing

Publication Analysis

Top Keywords

il-12 production
16
t gondii infection
12
dendritic cells
8
toxoplasma gondii
8
irak1 irak2
8
production cell
8
cell populations
8
dcs mo-dcs
8
il-12
6
infection
5

Similar Publications

Metabolite accumulation in the tumor microenvironment fosters immune evasion and limits the efficiency of immunotherapeutic approaches. Methylthioadenosine phosphorylase (MTAP), which catalyzes the degradation of 5'-deoxy-5'methylthioadenosine (MTA), is downregulated in many cancer entities. Consequently, MTA accumulates in the microenvironment of MTAP-deficient tumors, where it is known to inhibit tumor-infiltrating T cells and NK cells.

View Article and Find Full Text PDF

The gut microbiota plays a crucial role in modulating anticancer immunity, significantly impacting the effectiveness of various cancer therapies, including immunotherapy, chemotherapy, and radiotherapy. Its impact on the development of cancer is complex; certain bacteria, like and , can stimulate the growth of tumors by causing immunological evasion and inflammation, while advantageous strains, like , have the ability to suppress tumors by modifying immune responses. Cytokine activity and immune system regulation are intimately related.

View Article and Find Full Text PDF

Cytomegalovirus is a promising vaccine vector; however, mechanisms promoting CD4 T cell responses to challenge, by CMV as a vector, are unknown. The ability of MCMV to prolong immunity generated by short-lived malaria vaccine was tested. MCMV provided non-specific protection to challenge with and increased interleukin-12 (IL-12) and CD8α dendritic cell (DC) numbers through prolonged MCMV-dependent interferon gamma (IFN-γ) production.

View Article and Find Full Text PDF

Mycobacterium tuberculosis Rv3435c gene regulates inflammatory cytokines and is involved in lung injury and mycobacterial survival in mice.

Microb Pathog

January 2025

College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China; The Ministry of Education Key Laboratory of Animal Production and the Product Quality and Safety, Changchun, China. Electronic address:

Mycobacterium tuberculosis enters the body through the respiratory tract, produces and releases virulence proteins through a variety of mechanisms, regulates the host immune mechanism through a variety of ways, and then survives in the body for a long time. These depend on virulence genes encoded by Mycobacterium tuberculosis. Previous studies found that the Rv3435c gene of Mycobacterium tuberculosis is highly conserved in pathogenic mycobacterium, but not conserved in non-pathogenic mycobacterium, which may be a potential virulence gene, and inhibit the secretion of inflammatory factors in RAW264.

View Article and Find Full Text PDF

Diabetes impairs IFNγ-dependent antibacterial defense in the lungs.

Mucosal Immunol

December 2024

Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German center for lung research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany. Electronic address:

Diabetes mellitus is associated with an increased risk of pneumonia, often caused by so-called typical and atypical pathogens including Streptoccocus pneumoniae and Legionella pneumophila, respectively. Here, we employed a variety of mouse models to investigate how diabetes influences pulmonary antibacterial immunity. Following intranasal infection with S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!