Plant and fungus interaction is a complex process involving many molecular factors determining the nature of relationship. The enigmatic methodology by which fungal endophytes are able to colonise a plant harmoniously is still inexplicable. Small RNAs have been identified as major regulatory elements under various biotic interactions. However, their role in endophytic plant-fungal interactions remain to be elucidated. Therefore, transcript expression data available on Gene Expression Omnibus for Arabidopsis thaliana was utilised for miRNAs identification under endophytism. The analysis predicted 15 miRNAs with differential expression of which the ath-miRNA398b modulation was significant. Application of psRNAtarget, C-mii, pmiREN, and TarDB provided a pool of 357 target genes for these miRNAs. Protein-protein interaction analysis identified major hub proteins, including BTB/POZ domain-containing protein, beta-Xylosidase-2 (AtBXL2), and Copper/Zinc Superoxide Dismutase-2 (AtSOD2). The quantitative real-time PCR validated the computational prediction and expression for selected target genes AtSOD2, AtBXL2, and AtRCA along with ath-miRNA398b under endophytism. Overall, results indicate that miRNAs have a significant role in regulating Arabidopsis thaliana-endophytic fungal interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-024-01051-7 | DOI Listing |
Plant Physiol
January 2025
Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China.
Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia 46022, Spain.
The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of mutants, revealing the role of BDH in hypocotyl cell elongation.
View Article and Find Full Text PDFPlant Physiol
January 2025
Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Str. 2, 30419 Hannover, Germany.
The vacuole is an important site for RNA degradation. Autophagy delivers RNA to the vacuole, where the vacuolar T2 RNase Ribonuclease 2 (RNS2) plays a major role in RNA catabolism. The presumed products of RNS2 activity are 3'-nucleoside monophosphates (3'-NMPs).
View Article and Find Full Text PDFPlant Physiol
January 2025
State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Plant-Fusarium Interactions Research Team, School of BioSciences, University of Melbourne, Parkville, Australia.
Jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) are the three major phytohormones coordinating plant defense responses, and all three are implicated in the defense against the fungal pathogen Fusarium oxysporum. However, their distinct modes of action and possible interactions remain unknown, in part because all spatial information on their activity is lacking. Here, we set out to probe this spatial aspect of plant immunity by using live-microscopy with newly developed fluorescence-based transcriptional reporter lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!