Pesticide residue detection technology for herbal medicine: current status, challenges, and prospects.

Anal Sci

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

Published: April 2024

AI Article Synopsis

Article Abstract

The domains of cancer therapy, disease prevention, and health care greatly benefit from the use of herbal medicine. Herbal medicine has become the mainstay of developing characteristic agriculture in the planting area increasing year by year. One of the most significant factors in affecting the quality of herbal medicines is the pesticide residue problem caused by pesticide abuse during the cultivation of herbal medicines. It is urgent to solve the problem of detecting pesticide residues in herbal medicines efficiently and rapidly. In this review, we provide a comprehensive description of the various methods used for pesticide residue testing, including optical detection, the enzyme inhibition rate method, molecular detection methods, enzyme immunoassays, lateral immunochromatographic, nanoparticle-based detection methods, colorimetric immunosensor, chemiluminescence immunosensor, smartphone-based immunosensor, etc. On this basis, we systematically analyze the mechanisms and some of the findings of the above detection strategies and discuss the challenges and prospects associated with the development of pesticide residue detection tools.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s44211-024-00515-9DOI Listing

Publication Analysis

Top Keywords

pesticide residue
16
herbal medicine
12
herbal medicines
12
residue detection
8
challenges prospects
8
detection methods
8
pesticide
6
detection
6
herbal
6
detection technology
4

Similar Publications

Nano-TiO as an antimicrobial inorganic material, can stimulate cells to produce reactive oxygen species and exhibit effective biochemical properties; however, phenylpyrazole derivatives, as organic pesticides, are widely used in agriculture and food. To find novel pesticides with environmental friendliness, combined with three-dimensional quantitative structure-activity relationship (3D-QSAR) prediction analysis, three types of alkaloidal phenylpyrazole amine derivatives (PA) were synthesized by a one-pot microwave method. Based on the dye sensitization strategy, four nano-organometallic pesticides (PT) were prepared by organic-inorganic hybridization.

View Article and Find Full Text PDF

Improved Analysis of Glyphosate, Aminomethylphosphonic Acid, and Other Highly Polar Pesticides and Metabolites via the QuPPe Method by Employing Ethylenediaminetetraacetic Acid and IC-MS/MS.

J Agric Food Chem

January 2025

EU-Reference Laboratory for Pesticides Requiring Single Residue Methods (EURL-SRM), Chemisches und Veterinäruntersuchungsamt Stuttgart, Fellbach D-70736, Germany.

The quantification of glyphosate (Gly) and its metabolite aminomethylphosphonic acid (AMPA) in food is often impaired by matrix components. Specifically, interaction between the analytes and natural matrix components in food leads to reduced analyte recovery rates. Here, we studied how the addition of ethylenediaminetetraacetic acid (EDTA) impacted the QuPPe recovery rates of Gly and its metabolite in eight mostly problematic matrices using tandem mass spectrometry.

View Article and Find Full Text PDF

Hierarchical structures of surface-accessible plasmonic gold and silver nanoparticles for SERS detection.

Soft Matter

January 2025

Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.

View Article and Find Full Text PDF

Background: Fomesafen is a selective herbicide widely used to control post-emergent broad-leaf weeds in soybean and peanut fields. Because of its persistent nature in soil, it can suppress subsequent crops, including wheat. There is limited information focusing on methods of protecting wheat from fomesafen injury by soil residue.

View Article and Find Full Text PDF

Application of QuEChERS for analysis of contaminants in dairy products: a review.

J Food Prot

January 2025

Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032 China. Electronic address:

The safety of dairy products is intrinsically linked to consumer health, and the exceedance of risk indicators, such as pesticide and veterinary drug residues, constitutes one of the primary issues affecting their quality and safety. To assess the safety of dairy products, it is crucial to develop accurate and reliable analytical methods for their detection. Food safety testing involving important indicators such as pesticide residues, veterinary drug residues, mycotoxins and unapproved additives has become a pivotal requirement in the industry field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!