Development, characterization, and evaluation of a simple polymicrobial colony biofilm model for testing of antimicrobial wound dressings.

J Appl Microbiol

National Biofilms Innovation Centre, School of Life Sciences, Biodiscovery Institute, University of Nottingham, NG7 2RD Nottingham, United Kingdom.

Published: March 2024

Unlabelled: Chronic wound infections are generally of polymicrobial nature with aerobic and anaerobic bacteria, as well as fungi frequently observed in them. Wound treatment involves a series of steps, including debridement of the wound, flushing, and often the use of multiple wound dressings many of which are antimicrobial. Yet, many wound dressings are tested versus single species of planktonic microbes, which fails to mirror the real-life presence of biofilms.

Aims: Simple biofilm models are the first step to testing of any antimicrobial and wound dressing; therefore, the aim of this study was to develop and validate a simple polymicrobial colony biofilm wound model comprised of Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans on RPMI-1640 agar. The model was then used to evaluate the topical disinfectant chlorohexidine and four commercially available wound dressings using the polymicrobial model. The model used was as a starting point to mimic debridement in clinical care of wounds and the effectiveness of wound dressings evaluated afterwards.

Methods And Results: Planktonic assessment using AATCC100-2004 demonstrated that all antimicrobial wound dressings reduced the planktonic microbial burden below the limit of detection; however, when challenged with polymicrobial colony biofilms, silver wound dressings showed limited effectiveness (1-2 log CFU reductions). In contrast, a single iodine releasing wound dressing showed potent antibiofilm activity reducing all species CFUs below the limit of detection (>6-10 log) depending on the species. A disrupted biofilm model challenge was performed to represent the debridement of a wound and wound silver-based wound dressings were found to be marginally more effective than in whole colony biofilm challenges while the iodine containing wound dressing reduced microbial recovery below the limit of detection.

Conclusions: In this model, silver dressings were ineffective versus the whole colony biofilms but showed some recovery of activity versus the disrupted colony biofilm. The iodine wound dressing reduced the viability of all species below the level of detection. This suggests that mode of action of wound dressing should be considered for the type of biofilm challenge as should the clinical use, e.g. debridement.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jambio/lxae042DOI Listing

Publication Analysis

Top Keywords

wound dressings
32
wound dressing
20
wound
19
colony biofilm
16
antimicrobial wound
16
polymicrobial colony
12
dressings
9
simple polymicrobial
8
biofilm model
8
testing antimicrobial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!