The effect of tessellation on stiffness in the hyoid arch of elasmobranchs.

J Morphol

New College of Interdisciplinary Arts and Sciences, Arizona State University, Tempe, Arizona, USA.

Published: March 2024

Tessellated cartilage forms much of the skeleton of sharks and rays, in contrast to most other aquatic vertebrates who possess a skeleton of bone. Interestingly, many species of sharks and rays also regularly generate exceptionally high forces in the execution of day-to-day activities, such as when feeding on bony fish, mammals, and hard-shelled invertebrates. Tessellated cartilage differs from other types of cartilage in that they are covered by an outer layer of small mineralized tiles (tesserae) that are connected by fibrous connective tissue. Tesserae, therefore, are hypothesized to play a role in stiffening the cartilaginous skeleton for food capture and other activities that require the generation of high forces. In this study, the hyomandibula and ceratohyal cartilages, which support the jaw and throat regions of sharks and rays, were tested under compressive load in a material testing system to determine the contribution of tesserae to stiffness. Previous hypotheses suggest an abrupt upward shift in the slope of the stress-strain curve in tessellated materials due to collision of tesserae. Young's Modulus (E) was calculated and used to evaluate cartilage stiffness in a range of elasmobranch species. Our results revealed that there was an abrupt shift in Young's Modulus for elements loaded in compression. We postulate that this shift, characterized by an inflection point in the stress-strain curve, is the result of the tesserae approaching one another and compressing the intervening fibrous tissue, supporting the hypothesis that tesserae function to stiffen these cartilages under compressive loading regimes. Using published data for nontessellated cartilage for comparison, we show that this shift is, as expected, unique to tessellated cartilage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.21681DOI Listing

Publication Analysis

Top Keywords

tessellated cartilage
12
sharks rays
12
high forces
8
stress-strain curve
8
young's modulus
8
cartilage
6
tesserae
6
tessellation stiffness
4
stiffness hyoid
4
hyoid arch
4

Similar Publications

The skeletons of sharks and rays, fashioned from cartilage, and armored by a veneer of mineralized tiles (tesserae) present a mathematical challenge: How can the continuous covering be maintained as the skeleton expands? This study, using microCT and custom visual data analyses of growing stingray skeletons, systematically examines tessellation patterns and morphologies of the many thousand interacting tesserae covering the hyomandibula (a skeletal element critical to feeding), over a two-fold developmental change in hyomandibula length. The number of tesserae remains surprisingly constant, even as the hyomandibula expands isometrically, with all hyomandibulae displaying self-similar distributions of tesserae shapes/sizes. Although the distribution of tesserae geometries largely agrees with the rules for polyhedra tiling of complex surfaces-dominated by hexagons and a minor fraction of pentagons and heptagons, but very few other polygons-the agreement with Euler's classic mathematical laws is not perfect.

View Article and Find Full Text PDF

The jaws and their supporting cartilages are tessellated in elasmobranchs and exhibit an abrupt increase in stiffness under compression. The major jaw-supporting cartilage, the hyomandibula, varies widely by shape and size and the extent of the load-bearing role is hypothesized to be inversely related to the number of craniopalatine articulations. Here, we test this hypothesis by evaluating the strength of the hyomandibular cartilage under compression in 13 species that represent all four jaw suspension systems in elasmobranchs (amphistyly, orbitostyly, hyostyly, and euhyostyly).

View Article and Find Full Text PDF

The effect of tessellation on stiffness in the hyoid arch of elasmobranchs.

J Morphol

March 2024

New College of Interdisciplinary Arts and Sciences, Arizona State University, Tempe, Arizona, USA.

Tessellated cartilage forms much of the skeleton of sharks and rays, in contrast to most other aquatic vertebrates who possess a skeleton of bone. Interestingly, many species of sharks and rays also regularly generate exceptionally high forces in the execution of day-to-day activities, such as when feeding on bony fish, mammals, and hard-shelled invertebrates. Tessellated cartilage differs from other types of cartilage in that they are covered by an outer layer of small mineralized tiles (tesserae) that are connected by fibrous connective tissue.

View Article and Find Full Text PDF

Unlabelled: Articular cartilage in synovial joints such as the knee has limited capability to regenerate independently, and most clinical options for focal cartilage repair merely delay total joint replacement. Tissue engineering presents a repair strategy in which an injectable cell-laden scaffold material is used to reconstruct the joint in situ through mechanical stabilisation and cell-mediated regeneration. In this study, we designed and 3D-printed millimetre-scale micro-patterned PEGDA biomaterial microscaffolds which self-assemble through tessellation at a scale relevant for applications in osteochondral cartilage reconstruction.

View Article and Find Full Text PDF

Mineral tessellation in mouse enthesis fibrocartilage, Achilles tendon, and Hyp calcifying enthesopathy: A shared 3D mineralization pattern.

Bone

September 2023

Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada. Electronic address:

The hallmark of enthesis architecture is the 3D compositional and structural gradient encompassing four tissue zones - tendon/ligament, uncalcified fibrocartilage, calcified fibrocartilage and bone. This functional gradient accommodates the large stiffness differential between calcified bone and uncalcified tendon/ligament. Here we analyze in 3D the organization of the mouse Achilles enthesis and mineralizing Achilles tendon in comparison to lamellar bone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!