Anomalous diffusive behaviors are observed in highly inhomogeneous but relatively stable environments such as intracellular media and are increasingly attracting attention. In this paper we develop a coupled continuous-time random walk model in which the waiting time is power-law coupled with the local environmental diffusion coefficient. We provide two forms of the waiting time density, namely, a heavy-tailed density and an exponential density. For different waiting time densities, anomalous diffusions with the diffusion exponent between 0 and 2 and Brownian yet non-Gaussian diffusion can be realized within the present model. The diffusive behaviors are analyzed and discussed by deriving the mean-squared displacement and probability density function. In addition we derive the effective jump length density corresponding to the decoupled form to help distinguish the diffusion types. Our model unifies two kinds of anomalous diffusive behavior with different characteristics in the same inhomogeneous environment into a theoretical framework. The model interprets the random motion of particles in a complex inhomogeneous environment and reproduces the experimental results of different biological and physical systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.109.014130 | DOI Listing |
Biophys J
January 2025
Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA. Electronic address:
In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China. Electronic address:
In the past few years, three protein molecules-USP53, NPY2R, and DCTN1-AS1-have garnered significant attention in scientific research due to their potential implications in tumor development. Mass spectrometry and proteomics techniques were used to analyze the three-dimensional structure of these protein molecules and predict their active sites and functional domains. The effects of USP53, NPY2R and DCTN1-AS1 on biological behavior of tumor cells were studied by constructing gene knockout and overexpression cell models.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
January 2025
Microbiology Unit, Clinical Pathology Department, Piacenza General Hospital, Piacenza, Italy; Medicine and Surgery Department, University of Parma, Parma, Italy.
Objectives: Infections by Carbapenem-Resistant Enterobacterales in hospitals represent a severe threat but little is known on outbreaks in rehabilitation wards caused by Klebsiella pneumoniae producing Klebsiella pneumoniae Carbapenemase (KPC-Kp). We report an outbreak by KPC-Kp, in a Neurorehabilitation Unit in Italy, analysed through Whole-Genome Sequencing (WGS) for transmission routes reconstruction to improve management of KPC-Kp infections in rehabilitation units.
Methods: We investigated cases and KPC-Kp isolates collected from February to October 2022 from hospital surveillance.
Biol Psychiatry
January 2025
MIND Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA.
Background: Fine motor challenges are prevalent in autistic populations. However, little is known about their neurobiological underpinnings or how their related neural mechanisms are influenced by sex. The dorsal striatum, comprised of the caudate nucleus and putamen, is associated with motor learning and control and may hold critical information.
View Article and Find Full Text PDFNeuroimage
January 2025
College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China. Electronic address:
Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!