It is well established that when multivalent counterions or salts are added to a solution of highly charged polyelectrolytes (PEs), correlation effects can cause charge inversion of the PE, leading to electrophoretic mobility (EM) reversal. In this work, we use coarse-grained molecular-dynamics simulations to unravel the less understood effect of coion valency on EM reversal for rigid DNA-like PEs. We find that EM reversal induced by multivalent counterions is suppressed with increasing coion valency in the salt added and eventually vanishes. Further, we find that EM is enhanced at fixed low salt concentrations for salts with monovalent counterions when multivalent coions with increasing valency are introduced. However, increasing the salt concentration causes a crossover that leads to EM reversal which is enhanced by increasing coion valency at high salt concentration. Remarkably, this multivalent coion-induced EM reversal persists even for low values of PE linear charge densities where multivalent counterions alone cannot induce EM reversal. These results facilitate tuning PE-PE interactions and self-assembly with both coion and counterion valencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.109.014501 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Physics, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India.
Memristors that mimic brain functions are crucial for energy-efficient neuromorphic devices. Ion channels that emulate biological synapses are still in the early stages of development, especially the tunability of memory states. Here, we demonstrate that cations such as K, Na, Ca, and Al intercalated in the interlayer spaces of vermiculite result in highly confined channels of size 3-5 Å.
View Article and Find Full Text PDFProg Biophys Mol Biol
November 2024
Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal. Electronic address:
This review delves into the reversible process of DNA compaction, vital for cellular functions like replication and transcription. The study highlights how various cations assist in the condensation of DNA chains, highlighting their specificity. The impact of the ionic environment on chromatin characteristics is discussed, emphasizing the roles of mono- and divalent cations in neutralizing DNA charge and promoting compaction.
View Article and Find Full Text PDFJ Chem Phys
October 2024
Department of Applied Physics, Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland.
We examine the interactions between polyelectrolytes (PEs) and uncharged substrates under conditions corresponding to a dielectric discontinuity between the aqueous solution and the substrate. To this end, we vary the relevant system characteristics, in particular the substrate dielectric constant ɛs under different salt conditions. We employ coarse-grained molecular dynamics simulations with rodlike PEs in salt solutions with explicit ions and implicit water solvent with dielectric constant ɛw = 80.
View Article and Find Full Text PDFJ Chem Phys
September 2024
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil.
We explore the charge regulation (CR) of spherical nanoparticles immersed in an asymmetric electrolyte of a specified pH. Using a recently developed reactive canonical Monte Carlo (MC) simulation method, titration isotherms are obtained for suspensions containing monovalent, divalent, and trivalent coions. A theory based on the modified Poisson-Boltzmann approximation, which incorporates the electrostatic ion solvation free energy and discrete surface charge effects, is used to compare with the simulation results.
View Article and Find Full Text PDFSoft Matter
September 2024
Department of Chemistry and Biochemistry, School of Natural Sciences, University of California, Merced, California 95343, USA.
Anionic polyelectrolytes, such as DNA, are attracted to anionic surfaces in the presence of multivalent cations. A major barrier toward molecular-level understanding of these attractive interactions is the paucity of measurements of the binding strength. Here, atomic force microscopy-based single molecule force spectroscopy was used to quantify the binding free energy of double-stranded DNA to an anionic surface, with complementary density functional theory calculations of the binding energies of metal ion-ligand complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!