Background: Therapeutic drug monitoring (TDM) using cyclin-dependent kinase inhibitors (CDK4/6is) is a novel approach for optimizing treatment outcomes. Currently, palbociclib, ribociclib, and abemaciclib are the available CDK4/6is and are primarily coadministered with letrozole. This study aimed to develop and validate an LC-MS/MS method for the simultaneous analysis of CDK4/6is, 2 active metabolites of abemaciclib (M2 and M20), and letrozole in human plasma for use in TDM studies.

Methods: Sample pretreatment comprised protein precipitation with methanol and dilution of the supernatant with an aqueous mobile phase. Chromatographic separation was achieved using a reversed-phase XBridge BEH C18 column (2.5 μm, 3.0 × 75 mm XP), with methanol serving as the organic mobile phase and pyrrolidine-pyrrolidinium formate (0.005:0.005 mol/L) buffer (pH 11.3) as the aqueous mobile phase. A triple quadrupole mass spectrometer was used for the detection, with the ESI source switched from negative to positive ionization mode and the acquisition performed in multiple reaction monitoring mode.

Results: The complete validation procedure was successfully performed in accordance with the latest regulatory guidelines. The following analytical ranges (ng/mL) were established for the tested compounds: 6-300, palbociclib and letrozole; 120-6000, ribociclib; 40-800, abemaciclib; and 20-400, M2 and M20. All results met the acceptance criteria for linearity, accuracy, precision, selectivity, sensitivity, matrix effects, and carryover. A total of 85 patient samples were analyzed, and all measured concentrations were within the validated ranges. The percent difference for the reanalyzed samples ranged from -11.2% to 7.0%.

Conclusions: A simple and robust LC-MS/MS method was successfully validated for the simultaneous quantification of CDK4/6is, M2, M20, and letrozole in human plasma. The assay was found to be suitable for measuring steady-state trough concentrations of the analytes in patient samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232939PMC
http://dx.doi.org/10.1097/FTD.0000000000001174DOI Listing

Publication Analysis

Top Keywords

m20 letrozole
12
letrozole human
12
human plasma
12
lc-ms/ms method
12
mobile phase
12
palbociclib ribociclib
8
ribociclib abemaciclib
8
abemaciclib m20
8
aqueous mobile
8
patient samples
8

Similar Publications

Therapeutic drug monitoring (TDM) may be beneficial for cyclin-dependent kinase 4/6 inhibitors (CDK4/6is), such as palbociclib, ribociclib, and abemaciclib, due to established exposure-toxicity relationships and the potential for monitoring treatment adherence. Developing a method for quantifying CDK4/6is, abemaciclib metabolites (M2, M20), and letrozole in dried blood spots (DBS) could be useful to enhance the feasibility of TDM. Thus, an optimized LC-MS/MS method was developed using the HemaXis DB10 device for volumetric (10 µL) DBS collection.

View Article and Find Full Text PDF

Effects of 17α-methyltestosterone and letrozole on growth and gonadal development in largemouth bass ().

Front Physiol

September 2024

Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China.

In order to optimize the parameters for reversing masculinization and establish the techniques for sex induction of pseudo-males and creation of all-female fry in largemouth bass (, LMB), 15-day-old LMB (1.00 ± 0.10 cm in length, 0.

View Article and Find Full Text PDF

Background: Therapeutic drug monitoring (TDM) using cyclin-dependent kinase inhibitors (CDK4/6is) is a novel approach for optimizing treatment outcomes. Currently, palbociclib, ribociclib, and abemaciclib are the available CDK4/6is and are primarily coadministered with letrozole. This study aimed to develop and validate an LC-MS/MS method for the simultaneous analysis of CDK4/6is, 2 active metabolites of abemaciclib (M2 and M20), and letrozole in human plasma for use in TDM studies.

View Article and Find Full Text PDF

Quercitrin alleviates lipid metabolism disorder in polycystic ovary syndrome-insulin resistance by upregulating PM20D1 in the PI3K/Akt pathway.

Phytomedicine

August 2023

Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, 710061, China; Institute of Organ Transplantation, Xi'an Jiaotong University, 710061, China. Electronic address:

Background: Abnormal endocrine metabolism caused by polycystic ovary syndrome combined with insulin resistance (PCOS-IR) poses a serious risk to reproductive health in females. Quercitrin is a flavonoid that can efficiently improve both endocrine and metabolic abnormalities. However, it remains unclear if this agent can exert therapeutic effect on PCOS-IR.

View Article and Find Full Text PDF

Abemaciclib (ABEMA) is the last CDKi approved for the treatment of breast cancer. Adverse reactions to this drug are not experienced in the same manner by the entire patient population but in case of severe toxicity dose reductions and therapy discontinuation are required, suggesting that a TDM-guided treatment could be beneficial for these patients. ABEMA is extensively metabolized by the liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!