Self-assembling systems in nature display remarkable complexity with assemblies of different sub-units to generate functional species. Synthetic analogues of such systems are a challenge, often requiring the ability to bias distributions that are under thermodynamic assembly control. Using lantern-type MOCs (metal-organic cages) as a prototypical self-assembling system, herein we explore the role that steric bulk plays in controlling the exchange rate of ligands in paddlewheel-based assemblies, and thus the stability of cages, in competitive self-assembling scenarios. The effective lifetime of the lantern-type MOCs varies over an order of magnitude depending on the steric bulk proximal to the metal nodes with lifetimes of the cages ranging from tens of minutes to several hours. The bulk of the coordinating solvents likewise reduces the rate of ligand exchange, and thus yields longer-lived species. Understanding this subtle effect has implications for controlling the stability of complex assemblies in competitive environments with implications for guest release and application.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202400072DOI Listing

Publication Analysis

Top Keywords

metal-organic cages
8
ligand exchange
8
lantern-type mocs
8
steric bulk
8
stabilization lantern-type
4
lantern-type metal-organic
4
cages
4
cages mocs
4
mocs protective
4
protective control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!