Staphylococcus aureus is a common clinical pathogen that causes various human infections. The aim of this study was to investigate the antibiotic susceptibility pattern, molecular epidemiological characteristics, and biofilm formation ability of S. aureus isolates from clinical specimens in Xiangyang and to analyze the correlation among them. A total of 111 non-duplicate S. aureus isolates were collected from the Affiliated Hospital of Hubei University of Arts and Science. All isolates were tested for antibacterial susceptibility. Methicillin-resistant S. aureus (MRSA) was identified by the mecA gene PCR amplification. All isolates were analyzed to determine their biofilm-forming ability using the microplate method. The biofilm-related gene was determined using PCR. SCCmec, MLST, and spa types of MRSA strains were performed to ascertain the molecular characteristics. Among the 111 S. aureus isolates, 45 (40.5%) and 66 (59.5%) were MRSA and MSSA, respectively. The resistance of MRSA strains to the tested antibiotics was significantly stronger than that of MSSA strains. All isolates were able to produce biofilm with levels ranging from strong (28.9%, 18.2%), moderate (62.2%, 62.1%), to weak (8.9%, 19.7%). Strong biofilm formation was observed in MRSA strains than in MSSA strains, based on percentages. There were dynamic changes in molecular epidemic characteristics of MRSA isolates in Xiangyang. SCCmecIVa-ST22-t309, SCCmecIVa-ST59-t437, and SCCmecIVa-ST5-t2460 were currently the main epidemic clones in this region. SCCmecIVa-ST5-t2460 and SCCmecIVa/III-ST22-t309 have stronger antibiotic resistance than SCCmecIVa-ST59-t437 strains, with resistance to 6 ~ 8 detected non-β-lactam antibiotics. The molecular epidemic and resistance attributes of S. aureus should be timely monitored, and effective measures should be adopted to control the clinical infection and spread of the bacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153456 | PMC |
http://dx.doi.org/10.1007/s42770-024-01270-9 | DOI Listing |
Sci Rep
December 2024
OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India.
Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.
The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.
is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
School of Biosciences, University of Kent, Canterbury, United Kingdom.
Introduction: Antimicrobial resistance is a growing health problem. Pseudomonas aeruginosa is a pathogen of major concern because of its multidrug resistance and global threat, especially in health-care settings. The pathogenesis and drug resistance of depends on its ability to form biofilms, making infections chronic and untreatable as the biofilm protects against antibiotics and host immunity.
View Article and Find Full Text PDFCureus
November 2024
Department of Nephrology, Nagasaki University Hospital, Nagasaki, JPN.
A 63-year-old woman undergoing peritoneal dialysis (PD) presented to our hospital with abdominal pain, diarrhea, and cloudy PD effluent. An elevated white blood cell count in the PD effluent led to a diagnosis of PD-associated peritonitis. She was subsequently started on intraperitoneal cefazolin and ceftazidime, after which her condition improved rapidly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!