RNA m6 methyladenosine (m6A) modifications impact tumor biology and immune processes, particularly in hepatocellular malignant tumors. Using a consensus clustering algorithm on 371 hepatocellular carcinoma (HCC) samples, we identified three m6A-modified subtypes and correlated them with positive tumor microenvironment (TME) markers for distinct immune phenotypes. Stratifying patients based on m6A scores revealed a low presentation group with better immune penetration, lower tumor mutation load, and increased expression of immune checkpoint markers like CTLA-4 and PD-1, suggesting enhanced responsiveness to immunization therapy. A machine-learning model of 23 m6A genes was constructed. Single-cell analysis revealed a surprising enrichment of IGFBP3 in astrocytes, prompting the exploration of associated signaling pathways. Experimental verification shows that IGFBP3 is significantly enhanced in normal tissues, while immunohistochemical analysis shows that its expression is lower in tumor tissues, indicating its protective effect in HCC and a good prognosis. Importantly, high IGFBP3 expression is associated with better outcomes in patients receiving immunotherapy. Moreover, cytotoxic T lymphocyte (CTL) experiments have confirmed that high expression of IGFBP3 is associated with stronger T cell-killing ability. In summary, the comprehensive evaluation of m6A modification, immune characteristics, and single-cell analysis in this study not only revealed the TME of HCC but also made significant contributions to the progress of personalized HCC immunotherapy targeting IGFBP3. This study provides a solid theoretical foundation for clinical translation and emphasizes its potential impact on developing effective treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.24177DOI Listing

Publication Analysis

Top Keywords

hepatocellular carcinoma
8
lower tumor
8
single-cell analysis
8
immune
6
igfbp3
6
deciphering m6a
4
m6a signatures
4
signatures hepatocellular
4
carcinoma single-cell
4
single-cell insights
4

Similar Publications

The prognostic value of systemic immune-inflammation index in patients with unresectable hepatocellular carcinoma treated with immune-based therapy.

Biomark Res

January 2025

Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China.

Background: Predicting the efficacy of immune-based therapy in patients with unresectable hepatocellular carcinoma (HCC) remains a clinical challenge. This study aims to evaluate the prognostic value of the systemic immune-inflammation index (SII) in forecasting treatment response and survival outcomes for HCC patients undergoing immune-based therapy.

Methods: We analyzed a cohort of 268 HCC patients treated with immune-based therapy from January 2019 to March 2023.

View Article and Find Full Text PDF

Short- and long-term outcomes following laparoscopic liver resection for hepatocellular carcinoma combined with type I/II portal vein tumor thrombus.

Updates Surg

January 2025

Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guo Xue Road, Wu hou District, Chengdu, 610041, China.

Background: Despite the expanding indications for laparoscopic liver resection (LLR), its role in hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT) remains unclear. The aim of the current study is to compare the short- and long-term outcomes following LLR and open liver resection (OLR) for HCC with PVTT.

Methods: All HCC patients with PVTT registered for surgery between April 2015 and May 2022 were enrolled.

View Article and Find Full Text PDF

Background: Indocyanine green (ICG) fluorescence imaging technology is increasingly widely used in laparoscopic hepatectomy. However, previous studies have produced conflicting results regarding whether it is truly superior to traditional laparoscopic hepatectomy. This study investigated the clinical effect of laparoscopic hepatectomy for hepatocellular carcinoma (HCC) using ICG imaging technology.

View Article and Find Full Text PDF

This study aims to investigate the mechanism of tanshinone Ⅱ_A(Tan Ⅱ_A) in protecting mice from diethylinitrosamine(DEN)/carbon tetrachloride(CCl_4)/ethanol(C_2H_5OH)-induced hepatocellular carcinoma(HCC) and HepG2 cells from hydrogen peroxide(H_2O_2)-induced oxidative damage via the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and nuclear factor E2-related factor 2(Nrf2)/heme oxygenase 1(HO-1) signaling pathways. Sixty male C57BL/6J mice were grouped as follows: control, model, low, medium, and high-dose(10, 20, 40 mg·kg~(-1), respectively) Tan Ⅱ_A, and colchicine(0.2 mg·kg~(-1)), with 10 mice in each group.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) represents a significant global health burden, particularly in the Asia-Pacific region, where it is a leading cause of cancer-related mortality. In China alone, HCC accounts for approximately 367,700 new cases and 316,500 deaths annually; over 50% of patients are diagnosed at an advanced stage, limiting curative treatment options and resulting in poor survival outcomes. Systemic therapies combining immune checkpoint inhibitors (ICIs) with antiangiogenic targeted drugs have shown promise in converting unresectable HCC into resectable cases, potentially transforming clinical outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!