Metal-organic frameworks (MOFs) are high-performance adsorbents for atmospheric water harvesting but have poor water-desorption ability, requiring excess energy input to release the trapped water. Addressing this issue, a Janus-structured adsorbent with functional asymmetry is presented. The material exhibits contrasting functionalities on either face - a hygroscopic face interfaced with a photothermal face. Hygroscopic aluminum fumarate MOF and photothermal CuS layers are in-situ grown on opposite sides of a Cu/Al bimetallic substrate, resulting in a CuS-Cu/Al-MOF Janus hygro-photothermal hybrid. The two faces serve as independent "factories" for photothermal conversion and water adsorption-desorption respectively, while the interfacing bimetallic layer serves as a "heat conveyor belt" between them. Due to the high porosity and hydrophilicity of the MOF, the hybrid exhibits a water-adsorption capacity of 0.161 g g and a fast adsorption rate (saturation within 52 min) at 30% relative humidity. Thanks to the photothermal CuS, the hybrid can reach 71.5 °C under 1 Sun in 20 min and desorb 97% adsorbed water in 40 min, exhibiting a high photothermal conversion efficiency of over 90%. CuS-Cu/Al-MOF exhibits minimal fluctuations after 200 cycles, and its water-generation capacity is 3.21 times that of powdery MOF in 3 h in a self-designed prototype in one cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202306521 | DOI Listing |
Small
May 2024
Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou, 510640, China.
Metal-organic frameworks (MOFs) are high-performance adsorbents for atmospheric water harvesting but have poor water-desorption ability, requiring excess energy input to release the trapped water. Addressing this issue, a Janus-structured adsorbent with functional asymmetry is presented. The material exhibits contrasting functionalities on either face - a hygroscopic face interfaced with a photothermal face.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!