Background: Cervical cancer (CC) is a common malignancy of the female reproductive tract, and preoperative prediction of lymph node metastasis (LNM) is essential. This study aims to design and validate a magnetic resonance imaging (MRI) radiomics-based predictive model capable of detecting LNM in patients diagnosed with CC.
Methods: This retrospective analysis incorporated 86 and 38 CC patients into the training and testing groups, respectively. Radiomics features were extracted from MRI T2WI, T2WI-SPAIR, and axial apparent diffusion coefficient (ADC) sequences. Selected features identified in the training group were then used to construct a radiomics scoring model, with relevant LNM-related risk factors having been identified through univariate and multivariate logistic regression analyses. The resultant predictive model was then validated in the testing cohort.
Results: In total, 16 features were selected for the construction of a radiomics scoring model. LNM-related risk factors included worse differentiation (P < 0.001), more advanced International Federation of Gynecology and Obstetrics (FIGO) stages (P = 0.03), and a higher radiomics score from the combined MRI sequences (P = 0.01). The equation for the predictive model was as follows: -0.0493-2.1410 × differentiation level + 7.7203 × radiomics score of combined sequences + 1.6752 × FIGO stage. The respective area under the curve (AUC) values for the T2WI radiomics score, T2WI-SPAIR radiomics score, ADC radiomics score, combined sequence radiomics score, and predictive model were 0.656, 0.664, 0.658, 0.835, and 0.923 in the training cohort, while these corresponding AUC values were 0.643, 0.525, 0.513, 0.826, and 0.82 in the testing cohort.
Conclusions: This MRI radiomics-based model exhibited favorable accuracy when used to predict LNM in patients with CC. Relative to the use of any individual MRI sequence-based radiomics score, this predictive model yielded superior diagnostic accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873981 | PMC |
http://dx.doi.org/10.1186/s12957-024-03333-5 | DOI Listing |
BMC Med Imaging
January 2025
Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Purpose: We used knowledge discovery from radiomics of T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (T1C) for assessing relapse risk in patients with high-grade meningiomas (HGMs).
Methods: 279 features were extracted from each ROI including 9 histogram features, 220 Gy-level co-occurrence matrix features, 20 Gy-level run-length matrix features, 5 auto-regressive model features, 20 wavelets transform features and 5 absolute gradient statistics features. The datasets were randomly divided into two groups, the training set (~ 70%) and the test set (~ 30%).
Int Urol Nephrol
January 2025
Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, No. 2 Jiefang Road, Xiling District, Yichang, Hubei, China.
Objective: A prostate ultrasound (US) imaging omics model was established to assess its effectiveness in diagnosing prostate cancer (PCa), predicting Gleason score (GS), and determining the likelihood of distant metastasis.
Methods: US images of patients with prostate pathology confirmed by biopsy or surgery at our hospital were retrospectively analyzed. Regions of interest (ROI) segmentation, feature extraction, feature screening, and the construction and training of the radiomics model were performed.
Diagnostics (Basel)
December 2024
Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA.
: Intracerebral hemorrhages (ICH) and perihematomal edema (PHE) are respective imaging markers of primary and secondary brain injury in hemorrhagic stroke. In this study, we explored the potential added value of PHE radiomic features for prognostication in ICH patients. : Using a multicentric trial cohort of acute supratentorial ICH ( = 852) patients, we extracted radiomic features from ICH and PHE lesions on admission non-contrast head CTs.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Radiology and Intervention, Hospital Pakar Kanak-Kanak (UKM Specialist Children's Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia (Y.L., F.Y.L., J.N.C., H.A.H., H.A.M.); Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia (H.A.M.). Electronic address:
Rationale And Objectives: Extrathyroidal extension (ETE) and BRAF mutation in papillary thyroid cancer (PTC) increase mortality and recurrence risk. Preoperative identification presents considerable challenges. Although radiomics has emerged as a potential tool for identifying ETE and BRAF mutation, systematic evidence supporting its effectiveness remains insufficient.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Objective: To establish and validate a model based on hyperdense middle cerebral artery sign (HMCAS) radiomics features for predicting hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) after endovascular treatment (EVT).
Methods: Patients with AIS who presented with HMCAS on non-contrast computed tomography (NCCT) at admission and underwent EVT at three comprehensive hospitals between June 2020 and January 2024 were recruited for this retrospective study. A radiomics model was constructed using the HMCAS radiomics features most strongly associated with HT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!