Less invasive fixation techniques, such as intramedullary nailing (IMN) and minimally invasive percutaneous plate osteosynthesis (MIPPO), are now the preferred choices for treating tibia shaft fractures (TSFs). However, malreduction and radiation exposure are the main deficiencies associated with less invasive fixation techniques, especially when assessing rotation around the shaft axis intra-operatively. The purpose of this study was to investigate the feasibility and reduction accuracy of an innovative technology that integrates robotics and 3D printing for achieving anatomical reduction of TSFs with MIPPO. The surgical workflow from a standardized CT protocol, via 3D reconstruction, 3D printing tibia model, pre-contouring plate, 3D scanning plate, 3D planning of the trajectories of the robot, and use of a commercial surgical robot, robot-assisted screw hole drilling, to automatic fracture reduction through precise installation of the plate was described. The reduction accuracy was evaluated by an optical tracking system. The mean variations of 1.95 ± 1.36mm in length, 1.63 ± 0.92 mm in apposition, 2.78 ± 1.69° in alignment, and 1.99 ± 1.81° in rotation. The interoperator reliabilities were almost perfect, with values of 0.91, 0.93, 0.92, and 0.90, respectively. The proposed technology achieved anatomic reduction on phantom bones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2023.104079 | DOI Listing |
Adv Mater
January 2025
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.
Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti-counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free-standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
Ultrasound imaging is widely valued for its safety, non-invasiveness, and real-time capabilities but is often limited by operator variability, affecting image quality and reproducibility. Robot-assisted ultrasound may provide a solution by delivering more consistent, precise, and faster scans, potentially reducing human error and healthcare costs. Effective force control is crucial in robotic ultrasound scanning to ensure consistent image quality and patient safety.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Industrial Engineering and Robotics Faculty, Politehnica University of Bucharest, Spl. Independentei 303, 060042 Bucharest, Romania.
Additive manufacturing technology, also known as 3D printing, has emerged as a viable alternative in modern manufacturing processes. Unlike traditional manufacturing methods, which often involve complex mechanical operations that can lead to errors and inconsistencies in the final product, additive technology offers a new approach that enables precise layer-by-layer production with improved geometric accuracy, reduced material consumption and increased design flexibility. Geometrical accuracy is a critical issue in industries such as aerospace, automotive, medicine and consumer goods, hence the importance of the following question: can the dimensional optimisation of 3D FDM-manufactured parts be a solution for correct design? This paper presents a complex study of model parts printed from four common polymers used in fused deposition modelling (FDM) additive technology, namely ABS (acrylonitrile-butadiene-styrene), PLA (polylactic acid), HIPS (high-impact polystyrene) and PETG (polyethylene terephthalate glycol).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, 6201-001 Covilhã, Portugal.
This study investigates the mechanical properties of thermoplastic polyurethane (TPU) 60A, which is a flexible material that can be used to produce soft robotic grippers using additive manufacturing. Tensile tests were conducted under ISO 37 and ISO 527 standards to assess the effects of different printing orientations (0°, 45°, -45°, 90°, and quasi-isotropic) and test speeds (2 mm/min, 20 mm/min, and 200 mm/min) on the material's performance. While the printing orientations at 0° and quasi-isotropic provided similar performance, the quasi-isotropic orientation demonstrated the most balanced mechanical behavior, establishing it as the optimal choice for robust and predictable performance, particularly for computational simulations.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
Despite its widespread application in targeted drug delivery, soft robotics, and smart screens, magnetic hydrogel still faces challenges from lagging mechanical performance to sluggish response times. In this paper, a methodology of in situ generation of magnetic hydrogel based on 3D printing of poly-N-isopropylacrylamide (PNIPAM) is presented. A temperature-responsive PNIPAM hydrogel was prepared by 3D printing, and FeO magnetic particles were generated in situ within the PNIPAM network to generate the magnetic hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!