The synthetic buffer compound TRIS (2-amino-2-(hydroxymethyl)propane-1,3-diol) is used in countless applications, and no detailed information on its degradation has been published so far. Herein, we describe the discovery of a complete bacterial degradation pathway for TRIS. By serendipity, a Pseudomonas strain was isolated from sewage sludge that was able to grow with TRIS as only carbon and nitrogen source. Genome and transcriptome analyses revealed two adjacent gene clusters embedded in a mobile genetic element on a conjugative plasmid to be involved in TRIS degradation. Heterologous gene expression revealed cluster I to encode a TRIS uptake protein, a TRIS alcohol dehydrogenase, and a TRIS aldehyde dehydrogenase, catalyzing the oxidation of TRIS into 2-hydroxymethylserine. Gene cluster II encodes a methylserine hydroxymethyltransferase (mSHMT) and a d-serine dehydratase that plausibly catalyze the conversion of 2-hydroxymethylserine into pyruvate. Conjugational plasmid transfer into Pseudomonas putida KT2440 enabled this strain to grow with TRIS and with 2-hydromethylserine, demonstrating that the complete TRIS degradation pathway can be transmitted by horizontal gene transfer. Subsequent enrichments from wastewater purification systems led to the isolation of further TRIS-degrading bacteria from the Pseudomonas and Shinella genera carrying highly similar TRIS degradation gene clusters. Our data indicate that TRIS degradation evolved recently via gene recruitment and enzyme adaptation from multiple independent metabolic pathways, and database searches suggest that the TRIS degradation pathway is now globally distributed. Overall, our study illustrates how engineered environments can enhance the emergence of new microbial metabolic pathways in short evolutionary time scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848231 | PMC |
http://dx.doi.org/10.1093/ismejo/wrad023 | DOI Listing |
Molecules
December 2024
Department of Inorganic & Analytical Chemistry, Faculty of Science & Technology, University of Debrecen, H-4032 Debrecen, Hungary.
Heterobimetallic complexes of an ambidentate deferiprone derivative, 3-hydroxy-2-methyl-1-(3-((pyridin-2-ylmethyl)amino)propyl)pyridin-4(1H)-one (PyPropHpH), incorporating an octahedral [Co(4N)] (4N = tris(2-aminoethyl)amine (tren) or tris(2-pyridylmethyl)amine (tpa)) and a half-sandwich type [(η--cym)Ru] (-cym = -cymene) entity have been synthesized and characterized by various analytical techniques. The reaction between PyPropHpH and [Co(4N)Cl]Cl resulted in the exclusive (O,O) coordination of the ligand to Co(III) yielding [Co(tren)PyPropHp](PF) () and [Co(tpa)PyPropHp](PF) (). This binding mode was further supported by the molecular structure of [Co(tpa)PyPropHp](ClO)(OH)·6HO () and [Co(tren)PyPropHpH]Cl(PF)·2HO·CHOH (), respectively, obtained via the slow evaporation of the appropriate reaction mixtures and analyzed using X-ray crystallography.
View Article and Find Full Text PDFLuminescence
January 2025
College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.
It is of great significance to develop sensors for trace pesticide residues detection in food. Herein, an electrochemiluminescence (ECL) sensor with high sensitivity for the detection of methyl parathion (MP) was constructed by combining of the acetylcholinesterase (AChE) enzyme-inhibited reaction with tris-2,2'-bipyridyl ruthenium Ru(bpy) -triethylamine (TEA) system for the first time. A new ECL probe of MIL-100 loaded with Ru(bpy) (Ru-MIL-100) was synthesized, and then Ru-MIL-100 and AChE were immobilized on the electrode with Nafion.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institut de Química Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
The environmental persistence of organophosphate flame retardants (OPFRs) in water is becoming and environmental concern. White Rot Fungi (WRF) have proven its capability to degrade certain OPFRs such as tributyl phosphate (TBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP). Despite this capability, there is limited knowledge about the specific pathways involved in the degradation.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China. Electronic address:
Tris(2-choroethyl) phosphate (TCEP) is commonly utilized as a flame retardant and plasticizer, which inevitably coexists with polystyrene microplastics (PS-MPs) in aquatic environments. In this work, the promoting effect of pristine and aged PS-MPs on the photodegradation of TCEP was observed, and the reaction mechanisms and environmental risks of PS-MPs enhancing TCEP photodegradation were clearly revealed. The aged PS-MPs presenting more significant enhancement was attributed to more generation of reactive oxygen species (ROS).
View Article and Find Full Text PDFMar Drugs
December 2024
Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju-si 63349, Republic of Korea.
Green algae, particularly species, are rich in complex polysaccharides, such as ulvan, which have significant potential for biotechnological applications. However, the biochemical properties of ulvan depolymerised products remain underexplored. The enzymatic depolymerisation of ulvan has garnered attention owing to its cost advantages over alternative methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!