Gut microbiota reflect adaptation of cave-dwelling tadpoles to resource scarcity.

ISME J

Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China.

Published: January 2024

AI Article Synopsis

Article Abstract

Gut microbiota are significant to the host's nutrition and provide a flexible way for the host to adapt to extreme environments. However, whether gut microbiota help the host to colonize caves, a resource-limited environment, remains unknown. The nonobligate cave frog Oreolalax rhodostigmatus completes its metamorphosis within caves for 3-5 years before foraging outside. Their tadpoles are occasionally removed from the caves by floods and utilize outside resources, providing a contrast to the cave-dwelling population. For both cave and outside tadpoles, the development-related reduction in their growth rate and gut length during prometamorphosis coincided with a shift in their gut microbiota, which was characterized by decreased Lactobacillus and Cellulosilyticum and Proteocatella in the cave and outside individuals, respectively. The proportion of these three genera was significantly higher in the gut microbiota of cave-dwelling individuals compared with those outside. The cave-dwellers' gut microbiota harbored more abundant fibrolytic, glycolytic, and fermentative enzymes and yielded more short-chain fatty acids, potentially benefitting the host's nutrition. Experimentally depriving the animals of food resulted in gut atrophy for the individuals collected outside the cave, but not for those from inside the cave. Imitating food scarcity reproduced some major microbial features (e.g. abundant Proteocatella and fermentative genes) of the field-collected cave individuals, indicating an association between the cave-associated gut microbiota and resource scarcity. Overall, the gut microbiota may reflect the adaptation of O. rhodostigmatus tadpoles to resource-limited environments. This extends our understanding of the role of gut microbiota in the adaptation of animals to extreme environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811740PMC
http://dx.doi.org/10.1093/ismejo/wrad009DOI Listing

Publication Analysis

Top Keywords

gut microbiota
36
gut
11
microbiota reflect
8
reflect adaptation
8
resource scarcity
8
scarcity gut
8
microbiota
8
host's nutrition
8
extreme environments
8
cave individuals
8

Similar Publications

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

Background: Despite prior observational studies suggesting a link between gut microbiota to Kawasaki disease (KD), these findings remain debated. This study aimed to assess the association between gut microbiota and KD on a genetic level using a two-sample Mendelian randomization (MR) analysis.

Methods: This two-sample MR analysis utilized summary statistics from the largest genome-wide association study meta-analysis on gut microbiota conducted by the MiBioGen consortium.

View Article and Find Full Text PDF

There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.

View Article and Find Full Text PDF

Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.

View Article and Find Full Text PDF

Microbiota and immune dynamics in rheumatoid arthritis: Mechanisms and therapeutic potential.

Best Pract Res Clin Rheumatol

January 2025

Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA. Electronic address:

Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!