Bismuth sulfide nanoparticles (BiS NPs) were synthesized via the hydrothermal method, and reduced graphene oxide(rGO) and silver nanoparticles (Ag), which acted as substrates, have prepared using the chemical reduction method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy, and photoluminescence spectroscopy. Commercially available paracetamol-500 mg (PAM) and aspirin-300 mg (ASP) were selected for photodegradation under visible light using the as-prepared composites in an aqueous solution. Photoluminescence spectroscopy was used to detect PAM and ASP using the photo-excited electron transfer (PET) process, and the limit of detection (LOD) has obtained for PAM(8.70 ppm) and ASP(4.43 ppm) with a sensitivity of 0.9954 and 0.8002, respectively. Fourier transform infrared spectroscopy (FTIR) was used to analyze the before and after degradation products and to confirm the disintegrated products such as -COOH and -CH- both before and after disintegration.. The experimental data were found to fit well with the Freundlich isotherm, suggesting that the as-prepared nanocomposites exhibited a heterogeneous nature for PAM (5119 mg/L), and the pseudo-first-order kinetic model suggests ASP (1030 mg/L) with R values of 0.9119 and 0.7075. The risk assessment analysis of PAM was 9.823 μg/L(RQ > 1) and that of ASP was 0.2106 μg/L(RQ < 1), indicating that PAM has a higher potential risk than ASP. The demographic data of the participants indicated that PAM was the most stockpiled medicine at home; this work also encompasses the action of a single PAM and ASP tablet toward the environment, if it is accidently disposed of improperly could create massive water/soil pollution; hence, the care/duty of each person should follow the proper disposal of medical waste because we cannot replace this environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.118482 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, CHINA.
Broad-temperature optical thermometry necessitates materials with exceptional sensitivity and stability across varied thermal conditions, presenting challenges for conventional systems. Here, we report a lead-free, vacancy-ordered perovskite Cs2TeCl6, that achieves precise temperature sensing through a novel combination of self-trapped excitons (STEs) photoluminescence (PL) lifetime modulation and unprecedented fifth-order phonon anharmonicity. The STEs PL lifetime demonstrates a highly temperature-sensitive response from 200 to 300 K, ideal for low-to-intermediate thermal sensing.
View Article and Find Full Text PDFLangmuir
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.
View Article and Find Full Text PDFLangmuir
January 2025
ESYCOM, CNRS-UMR 9007, Université Gustave Eiffel, F-77454 Marne-la-Vallée, France.
This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan.
Edge contacts offer a significant advantage for enhancing the performance of semiconducting transition metal dichalcogenide (TMDC) devices by interfacing with the metallic contacts on the lateral side, which allows the encapsulation of all of the channel material. However, despite intense research, the fabrication of feasible electrical edge contacts to TMDCs to improve device performance remains a great challenge, as interfacial chemical characterization via conventional methods is lacking. A major bottleneck in explicitly understanding the chemical and electronic properties of the edge contact at the metal-two-dimensional (2D) semiconductor interface is the small cross section when characterizing nominally one-dimensional edge contacts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Feng Chia University, Taichung City, 40724, Taiwan.
The unique optical properties of perovskite quantum dots (PQDs), particularly the tunable photoluminescence (PL) across the visible spectrum, make them a promising tool for chlorinated detection. However, the correlation between the fluorescence emission shift behavior and the interface of phase transformation in PQDs has not been thoroughly explored. In this study, we synthesized CsPbBr PQDs via the hot-injection method and demonstrated their ability to detect chlorinated volatile compounds such as HCl and NaOCl through a halide exchange process between the PQDs' solid thin film and the chlorinated vapor phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!