Svetlov et al. identify the enzyme peptidyl-tRNA hydrolase as a ribosome-associated quality-control factor that promotes hydrolysis of the dislodged peptidyl-tRNA, which helps to recycle ribosomal subunits blocked by truncated nascent chains in bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2024.01.017 | DOI Listing |
Cell Rep
November 2024
Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada. Electronic address:
Bacterial mutant libraries with downregulated antibiotic targets are useful tools for elucidating the mechanisms of action of antibacterial compounds, a pivotal step in antibiotic discovery. However, achieving genomic coverage of antibacterial targets poses a challenge due to the uneven proliferation of knockdown mutants during pooled growth, leading to the unintended loss of important targets. To overcome this issue, we constructed an arrayed essential gene mutant library (EGML) in the antibiotic-resistant bacterium Burkholderia cenocepacia using CRISPR interference (CRISPRi).
View Article and Find Full Text PDFInt J Mol Sci
September 2024
State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Tannins, one of the most common anti-nutritional factors in feed, can be effectively degraded by various enzymes secreted by (). The cultivation method of fungi significantly impacts gene expression, which influences the production of enzymes and metabolites. In this study, we analyzed the tannin biodegredation efficiency and the transcriptomic responses of in liquid and solid cultures with tannin added.
View Article and Find Full Text PDFbioRxiv
July 2024
Department of Microbiology, Cornell University, Ithaca, NY 14853.
Unlabelled: Pooled knockdown libraries of essential genes are useful tools for elucidating the mechanisms of action of antibacterial compounds, a pivotal step in antibiotic discovery. However, achieving genomic coverage of antibacterial targets poses a challenge due to the uneven proliferation of knockdown mutants during pooled growth, leading to the unintended loss of important targets. To overcome this issue, we describe the construction of CIMPLE ( C RISPR i - m ediated p ooled library of e ssential genes), a rationally designed pooled knockdown library built in a model antibiotic-resistant bacteria, By analyzing growth parameters of clonal knockdown populations of an arrayed CRISPRi library, we predicted strain depletion levels during pooled growth and adjusted mutant relative abundance, approaching genomic coverage of antibacterial targets during antibiotic exposure.
View Article and Find Full Text PDFInt J Biol Macromol
August 2024
Biochemistry and Structural Biology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!