A computational pipeline towards large-scale and multiscale modeling of traumatic axonal injury.

Comput Biol Med

Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA; Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA. Electronic address:

Published: March 2024

Contemporary biomechanical modeling of traumatic brain injury (TBI) focuses on either the global brain as an organ or a representative tiny section of a single axon. In addition, while it is common for a global brain model to employ real-world impacts as input, axonal injury models have largely been limited to inputs of either tension or compression with assumed peak strain and strain rate. These major gaps between global and microscale modeling preclude a systematic and mechanistic investigation of how tissue strain from impact leads to downstream axonal damage throughout the white matter. In this study, a unique subject-specific multimodality dataset from a male ice-hockey player sustaining a diagnosed concussion is used to establish an efficient and scalable computational pipeline. It is then employed to derive voxelized brain deformation, maximum principal strains and white matter fiber strains, and finally, to produce diverse fiber strain profiles of various shapes in temporal history necessary for the development and application of a deep learning axonal injury model in the future. The pipeline employs a structured, voxelized representation of brain deformation with adjustable spatial resolution independent of model mesh resolution. The method can be easily extended to other head impacts or individuals. The framework established in this work is critical for enabling large-scale (i.e., across the entire white matter region, head impacts, and individuals) and multiscale (i.e., from organ to cell length scales) modeling for the investigation of traumatic axonal injury (TAI) triggering mechanisms. Ultimately, these efforts could enhance the assessment of concussion risks and design of protective headgear. Therefore, this work contributes to improved strategies for concussion detection, mitigation, and prevention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108109DOI Listing

Publication Analysis

Top Keywords

axonal injury
16
white matter
12
computational pipeline
8
modeling traumatic
8
traumatic axonal
8
global brain
8
brain deformation
8
head impacts
8
impacts individuals
8
axonal
5

Similar Publications

Objective: Approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Epidemiological data have identified traumatic brain injury (TBI) as an exogenous risk factor for ALS; however, the mechanisms by which TBI may worsen SOD1 ALS remain largely undefined.

Methods: We sought to determine whether repetitive TBI (rTBI) accelerates disease onset and progression in the transgenic SOD1 mouse ALS model, and whether loss of the primary regulator of axonal degeneration sterile alpha and TIR motif containing 1 (Sarm1) mitigates the histological and behavioral pathophysiology.

View Article and Find Full Text PDF

Edaravone Improves Motor Dysfunction Following Brachial Plexus Avulsion Injury in Rats.

ACS Chem Neurosci

January 2025

Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Brachial plexus root avulsion (BPRA) is often caused by road collisions, leading to total loss of motor function in the upper limb. At present, effective treatment options remain limited. Edaravone (EDA), a substance that eliminates free radicals, exhibits numerous biological properties, including neuroprotective, antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Electric field stimulation directs target-specific axon regeneration and partial restoration of vision after optic nerve crush injury.

PLoS One

January 2025

Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.

Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.

View Article and Find Full Text PDF

Background: Neurofilament Light Chain (NfL) is a blood biomarker of axonal injury and neurodegeneration that can be used in a variety of neurological disorders. Despite the potential clinical use of plasma NfL across multiple neurological disorders, there is increasing evidence that underlying comorbidities such as renal impairment associated with chronic kidney disease (CKD) and cardiovascular diseases can increase NfL concentrations. The objective of this study was to determine the relationship between plasma NfL concentrations and renal function (CKD staging) in individuals without known neurological conditions.

View Article and Find Full Text PDF

Background: Plasma neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) are markers of axonal and astroglial injury, respectively. Both markers have been proposed as predictive biomarkers of cerebral small vessel disease, with elevated levels indicating higher burden of white matter hyperintensities, lacunar infarcts and cerebral microbleeds. However, to date, no study has examined whether NfL and GFAP levels are associated with dynamic markers of small vessel damage such as cerebrovascular reactivity (CVR)-the ability of cerebral blood vessels to regulate cerebral blood flow (CBF) in response to vasodilatory or vasoconstrictive stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!