A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FeCoNi molybdenum-based oxides for efficient electrocatalytic oxygen evolution reaction. | LitMetric

FeCoNi molybdenum-based oxides for efficient electrocatalytic oxygen evolution reaction.

J Colloid Interface Sci

College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China. Electronic address:

Published: May 2024

The search for highly efficient and inexpensive electrocatalysts is crucial to the advancement of environmentally friendly and sustainable energy sources. Here, adopting a one-step hydrothermal method, we have effectively fabricated a self-supported multi-metal molybdenum-based oxide (FeCoNi-MoO) on nickel foam (NF). In addition to changing the catalyst's microstructure, the introducing of Fe and Co, enhanced its active center count, improved its electronic structure, and in turn reduced the difficulty for high-valence Ni and Fe species to form, which accelerates the oxygen evolution reaction (OER) kinetics by promoting the development of the actual active materials, NiOOH and FeOOH. FeCoNi-MoO has outstanding OER performance, requiring just 204 mV overpotentials at 10 mA cm and 271 mV at 100 mA cm. Its exceptional OER kinetics at both low and high currents are indicated by a Tafel slope of 50.6 mV dec, which is attributed to the combined effect of its multi-metal composition and a higher number of active sites. Moreover, the FeCoNi-MoO electrode was operated continuously for over 48 h. Furthermore, the density functional theory (DFT) results demonstrated that the introducing of Fe and Co, which quickens the rate of electron transfer during the electrocatalytic process, improves the ability of oxygen intermediate species to adsorb, and ultimately lowers the overpotential, is responsible for the increased electrocatalytic activity of FeCoNi-MoO. This work offers hope for further developments in the sector by proposing an efficient approach for creating multi-active electrocatalysts that are stable, economical, and efficient.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.02.104DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
8
evolution reaction
8
oer kinetics
8
feconi molybdenum-based
4
molybdenum-based oxides
4
efficient
4
oxides efficient
4
efficient electrocatalytic
4
electrocatalytic oxygen
4
reaction search
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!