Targeting myeloma metabolism: How abnormal metabolism contributes to multiple myeloma progression and resistance to proteasome inhibitors.

Neoplasia

Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China. Electronic address:

Published: April 2024

Multiple myeloma is a hematological malignancy that has evolved from antibody-secreting B lymphocytes. Like other types of cancers, myeloma cells have acquired functional capabilities which are referred to as "Hallmarks of Cancer", and one of their most important features is the metabolic disorders. Due to the high secretory load of the MM cells, the first-line medicine proteasome inhibitors have found their pronounced effects in MM cells for blocking the degradation of misfolded proteins, leading to their accumulation in the ER and overwhelming ER stress. Moreover, proteasome inhibitors have been reported to be effective in myeloma by targeting glucose, lipid, amino acid metabolism of MM cells. In this review, we have described the abnormal metabolism of the three major nutrients, such as glucose, lipid and amino acids, which participate in the cellular functions. We have described their roles in myeloma progression, how they could be exploited for therapeutic purposes, and current therapeutic strategies targeting these metabolites, hoping to uncover potential novel therapeutic targets and promote the development of future therapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881428PMC
http://dx.doi.org/10.1016/j.neo.2024.100974DOI Listing

Publication Analysis

Top Keywords

proteasome inhibitors
12
abnormal metabolism
8
multiple myeloma
8
myeloma progression
8
glucose lipid
8
lipid amino
8
myeloma
5
targeting myeloma
4
metabolism
4
myeloma metabolism
4

Similar Publications

Antisense oligonucleotides-based approaches for the treatment of multiple myeloma.

Int J Biol Macromol

December 2024

Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:

Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.

View Article and Find Full Text PDF

Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

HSP90 stabilizes visual cycle retinol dehydrogenase 5 in the endoplasmic reticulum by inhibiting its degradation during autophagy.

J Biol Chem

December 2024

The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The Joint National Laboratory of Antibody Drug Engineering, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, China; Kaifeng Key Lab for Cataracts and Myopia, Kaifeng Central Hospital, Kaifeng, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China. Electronic address:

Genetic mutations in retinol dehydrogenase 5 (RDH5), a rate-limiting enzyme of the visual cycle, is associated with nyctalopia, AMD and stationary congenital fundus albipunctatus (FA). A majority of these mutations impair RDH5 protein expression and intracellular localization. However, the regulatory mechanisms underlying RDH5 metabolism remain unclear.

View Article and Find Full Text PDF

Ubiquitination is a dynamic post-translational modification governing protein abundance, function, and localization in eukaryotes. The Ubiquitin protein is conjugated to lysine residues of target proteins, but can also repeatedly be ubiquitinated itself, giving rise to a complex code of ubiquitin chains with different linkage types. To enable studying the cellular dynamics of linkage-specific ubiquitination, light-activatable polyubiquitin chain formation is reported here.

View Article and Find Full Text PDF

E3 ubiquitin ligase ITCH-mediated proteasomal degradation of WBP2 sensitizes breast cancer cells to chemotherapy through restraining AMOTL2/c-JUN axis.

Biochem Pharmacol

December 2024

Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China. Electronic address:

Our study had demonstrated that WW domain-binding protein 2 (WBP2) conferred chemoresistance in breast cancer (BC). However, the underlying mechanism remains unclear. Herein, a decreased expression of itchy E3 ubiquitin protein ligase (ITCH) was observed in drug-resistant BC tissues which negatively regulated the expression of WBP2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!