Crucial role of interfacial interaction in 2D polar SiGe/GeC heterostructures.

J Phys Condens Matter

Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292, United States of America.

Published: February 2024

The planar charge transfer is a distinctive characteristic of the two-dimensional (2D) polar materials. When such 2D polar materials are involved in vertical heterostructures (VHs), in addition to the van der Waals (vdW) interlayer interaction, the interfacial interaction triggered by the in-plane charge transfer will play a crucial role. To deeply understand such mechanism, we conducted a comprehensive theoretical study focusing on the structural stability and electronic properties of 2D polar VHs built by commensurate SiGe/GeC bilayers with four species ordering patterns (classified as a C-group with patterns I and II and a Ge-group with patterns III and IV, respectively). It was found that the commensurate SiGe/GeC VHs are mainly stabilized by interfacial interactions (including the electrostatic interlayer bonding, the vdW force, as well as the/orbital hybridization), with the Ge-group being the most energetically favorable than the C-group. A net charge redistribution occurs between adjacent layers, which is significant (∼0.23-0.25 e cell) in patterns II and IV, but slightly small (∼0.05-0.09 e cell) in patterns I and III, respectively, forming spontaneousheterojunctions. Such interlayer charge transfer could also lead to a polarization in the interfacial region, with the electron depletion (accumulation) close to the GeC layer and the electron accumulation (depletion) close to the SiGe layer in the C-group (the Ge-group). This type of interface dipoles could induce a built-in electric field and help to promote photogenerated electrons (holes) migration. Furthermore, a semi-metal nature with a tiny direct band gap at the SiGe layer and a semiconducting nature at the GeC layer indicate that the commensurate SiG/GeC VHs possess a type-I band alignment of heterojunction and have a wide spectrum of light absorption capabilities, indicating its promising applications for enhancing light-matter interaction and interfacial engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad2a0aDOI Listing

Publication Analysis

Top Keywords

charge transfer
12
crucial role
8
interfacial interaction
8
polar materials
8
interaction interfacial
8
commensurate sige/gec
8
patterns iii
8
cell patterns
8
gec layer
8
sige layer
8

Similar Publications

Enhanced photocatalytic degradation of Rhodamine B using polyaniline-coated XTiO(X = Co, Ni) nanocomposites.

Sci Rep

January 2025

Laboratory of Materials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, 10000, Rabat, Morocco.

In this study, novel polyaniline-coated perovskite nanocomposites (PANI@CoTiO and PANI@NiTiO) were synthesized using an in situ oxidative polymerization method and evaluated for the photocatalytic degradation of Rhodamine B (RhB) a persistent organic pollutant. The nanocomposites displayed significantly enhanced photocatalytic efficiency compared to pure perovskites. The 1%wt PANI@NiTiO achieved an impressive 94% degradation of RhB under visible light after 180 min, while 1wt.

View Article and Find Full Text PDF

Light-up lipid droplets dynamic behaviors using rationally designed carbon dots.

Talanta

January 2025

Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China. Electronic address:

Lipid droplets (LDs) are essential organelles used to store lipids and participate in cellular lipid metabolism. Imaging LDs is an intuitive approach to comprehend their biological functions. Herein, the LDs-targeted CDs (LD-CDs) featuring robust solvatochromic emission were elaborately designed by a Schiff base reaction using 1, 2-diamino-4-fluorobenzene, 3-dimethylaminophenol, and thiourea as precursors.

View Article and Find Full Text PDF

Charge transfer emission between π- and 4f-orbitals in a trivalent europium complex.

Commun Chem

January 2025

Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Photoinduced metal-to-ligand (or ligand-to-metal) charge-transfer (CT) states in metal complexes have been extensively studied toward the development of luminescent materials. However, previous studies have mainly focused on CT transitions between d- and π-orbitals. Herein, we report the demonstration of CT emission from 4f- to π-orbitals using a trivalent europium (Eu(III)) complex, supported by both experimental and theoretical analyses.

View Article and Find Full Text PDF

We present a nonlinear model of thermal field emission in resonant tunneling nanostructures with multiple barriers and potential wells, based on an accurate determination of the quantum potential shape and a rigorous solution of the Schrödinger equation, while considering thermal balance. The model applies to vacuum and semiconductor resonant tunnel diode and triode structures with two and three electrodes and to the general case of two-way tunneling with electrode heating. The complete balance of heat release and transfer is accounted for, with heat transport considered ballistic.

View Article and Find Full Text PDF

Copper is ubiquitous as a structural material, and as a reagent in (bio)chemical transformations. A vast number of chemical reactions rely on the near-inevitable preference of copper for positive oxidation states to make useful compounds. Here we show this electronic paradigm can be subverted in a stable compound with a copper-magnesium bond, which conforms to the formal oxidation state of Cu(-I).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!