A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Formulation of Carnosic-Acid-Loaded Polymeric Nanoparticles: An Attempt to Endorse the Bioavailability and Anticancer Efficacy of Carnosic Acid against Triple-Negative Breast Cancer. | LitMetric

Triple-negative breast cancer (TNBC) is considered to be one of the most difficult subtypes of breast cancer (BC) to treat. The sheer absence of certain receptors makes it very tough to target, leaving high-dose chemotherapy as probably the sole therapeutic option at the cost of nonspecific toxic effects. Carnosic acid (CA) has been established as a potential chemotherapeutic agent against a range of cancer cells. However, its in vivo chemotherapeutic potential is significantly challenged due to its poor pharmacokinetic attributes. In this study, poly(lactic--glycolic) acid (PLGA) nanoparticles (NPs) were formulated to circumvent the biopharmaceutical limitations of CA. CA-loaded polymeric NPs (CA-PLGA NPs) have been evaluated as a potential therapeutic option in the treatment of TNBC. Different in vitro studies exhibited that CA-PLGA NPs significantly provoked oxidative-stress-mediated apoptotic death in MDA-MB-231 cells. The improved anticancer potential of CA-PLGA NPs over CA was found to be associated with improved cellular uptake of the nanoformulation by TNBC cells. In vivo studies also established the improvement in the chemotherapeutic efficacy of CA-nanoformulation over that of free CA without showing any sign of systemic toxicity. Thus, CA-PLGA NPs emerge as a promising candidate to fix two bugs with a single code, resolving biopharmaceutical attributes of CA as well as introducing a treatment option for TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.3c01087DOI Listing

Publication Analysis

Top Keywords

ca-plga nps
16
breast cancer
12
carnosic acid
8
triple-negative breast
8
therapeutic option
8
cells vivo
8
nps
6
formulation carnosic-acid-loaded
4
carnosic-acid-loaded polymeric
4
polymeric nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!