We propose a new paradigm to design a network-based self-adaptive epidemic model that relies on the interplay between the network and its line graph. We implement this proposal on a susceptible-infected-susceptible model in which both nodes and edges are considered susceptible and their respective probabilities of being infected result in a real-time re-modulation of the weights of both the graph and its line graph. The new model can be considered as an appropriate perturbation of the standard susceptible-infected-susceptible model, and the coupling between the graph and its line graph is interpreted as a reinforcement factor that fosters diffusion through a continuous adjustment of the parameters involved. We study the existence and stability conditions of the endemic and disease-free states for general network topologies. Moreover, we introduce, through the asymptotic values in the endemic steady states, a new type of eigenvector centrality where the score of a node depends on both the neighboring nodes and the edges connected to it. We also investigate the properties of this new model on some specific synthetic graphs, such as cycle, regular, and star graphs. Finally, we perform a series of numerical simulations and prove their effectiveness in capturing some empirical evidence on behavioral adoption mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0186658 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!