As an immune checkpoint, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) suppresses the activation, proliferation, and effector function of T cells, thus preventing an overexuberant response and maintaining immune homeostasis. However, whether and how this immune checkpoint functions in early vertebrates remains unknown. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell response by CTLA-4 in bony fish. Tilapia CTLA-4 is constitutively expressed in lymphoid tissues, and its mRNA and protein expression in lymphocytes are upregulated following PHA stimulation or Edwardsiella piscicida infection. Blockade of CTLA-4 signaling enhanced T cell activation and proliferation but inhibited activation-induced T cell apoptosis, indicating that CTLA-4 negatively regulated T cell activation. In addition, blocking CTLA-4 signaling in vivo increased the differentiation potential and cytotoxicity of T cells, resulting in an enhanced T cell response during E. piscicida infection. Tilapia CTLA-4 competitively bound the B7.2/CD86 molecule with CD28, thus antagonizing the CD28-mediated costimulatory signal of T cell activation. Furthermore, inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, c-Myc, or glycolysis markedly impaired the CTLA-4 blockade-enhanced T cell response, suggesting that CTLA-4 suppressed the T cell response of tilapia by inhibiting mTORC1/c-Myc axis-controlled glycolysis. Overall, the findings indicate a detailed mechanism by which CTLA-4 suppresses T cell immunity in tilapia; therefore, we propose that early vertebrates have evolved sophisticated mechanisms coupling immune checkpoints and metabolic reprogramming to avoid an overexuberant T cell response.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.2300599DOI Listing

Publication Analysis

Top Keywords

cell response
20
immune checkpoint
12
cell activation
12
ctla-4
10
cell
10
ctla-4 suppresses
8
activation proliferation
8
early vertebrates
8
tilapia ctla-4
8
piscicida infection
8

Similar Publications

Evidence accumulated mitochondria, as the "powerplants of the cell," express several functional receptors for external ligands that modify their function and regulate cell biology. This review sheds new light on the role of these organelles in sensing external stimuli to facilitate energy production for cellular needs. This is possible because mitochondria express some receptors on their membranes that are responsible for their autonomous responses.

View Article and Find Full Text PDF

Tumor microenvironment (TME) is composed of diverse cell types whose interactions, both direct and indirect, significantly influence tumorigenesis and therapeutic outcomes. Within TME, reactive oxygen species (ROS) are produced by various cells and exhibit a dual role: moderate ROS levels promote tumor initiation and progression, whereas excessive levels induce cancer cell death, influencing the efficacy of anticancer therapies. Inflammasomes, cytosolic multiprotein complexes, are pivotal in multiple stages of tumorigenesis and play a crucial role in establishing the inflammatory TME.

View Article and Find Full Text PDF

Beyond checkpoint inhibitors: the three generations of immunotherapy.

Clin Exp Med

January 2025

LSU-LCMC Cancer Center, LSU School of Medicine, 1700 Tulane Avenue, Room 510, New Orleans, LA, 70112, USA.

Anti-tumor immunotherapy was rediscovered and rejuvenated in the last two decades with the discovery of CTLA-4, PD-1 and PD-L1 and the roles in inhibiting immune function and tumor evasion of anti-tumor immune response. Following the approval of the first checkpoint inhibitor ipilimumab against CTLA-4 in melanoma in 2011, there has been a rapid development of tumor immunotherapy. Furthermore, additional positive and negative molecules among the T-cell regulatory systems have been identified that that function to fine tune the stimulatory or inhibitory immune cells and modulate their functions (checkpoint modulators).

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a primary liver malignancy characterized by high morbidity and mortality. Recently, ferroptosis has been recognized as an important factor in regulating cell growth in HCC. However, the role of ferroptosis-related genes in HCC remains unclear.

View Article and Find Full Text PDF

Upregulation of the MAP2K4 gene triggers endothelial-mesenchymal transition in COVID-19.

Mol Biol Rep

January 2025

Department of Molecular Biology and Genetics, Faculty of Art and Science, Tokat Gaziosmanpasa University, Tokat, 60200, Türkiye.

Background: SARS-CoV-2 infection is marked by an excessive inflammatory response, leading to elevated production of pro-inflammatory cytokines through activation of intracellular pathways like mitogen-activated protein kinase (MAPK). Viruses can use the MAPK signaling pathway to their advantage, but the relationship of this pathway to the severe SARS-CoV-2 period has not been fully elucidated. MAP2K4 is involved in the MAPK signaling pathway and affects cellular processes such as cell-cell junction, cell proliferation, differentiation and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!