Carbon allotropes are widely used as anode materials in Li batteries, with graphite being commercially successful. However, the limited capacity and cycling stability of graphite impede further advancement and hinder the development of electric vehicles. Herein, through density functional theory (DFT) computations and molecular dynamics (AIMD) simulations, we proposed holey penta-hexagonal graphene (HPhG) as a potential anode material, achieved through active site designing. Due to the internal electron accumulation from the π-bond, HPhG follows a single-layer adsorption mechanism on each side of the nanosheet, enabling a high theoretical capacity of 1094 mA h g without the risk of vertical dendrite growth. HPhG also exhibits a low open circuit voltage of 0.29 V and a low ion migration barrier of 0.32 eV. Notably, during the charge/discharge process, the lattice only expands slightly by 1.1%, indicating excellent structural stability. This work provides valuable insights into anode material design and presents HPhG as a promising two-dimensional material for energy storage applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp06146a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!