Background: Disrupted protein homeostasis (proteostasis) has been demonstrated to facilitate the progression of various diseases. The cytosolic T-complex protein-1 ring complex (TRiC/CCT) was discovered to be a critical player in orchestrating proteostasis by folding eukaryotic proteins, guiding intracellular localisation and suppressing protein aggregation. Intensive investigations of TRiC/CCT in different fields have improved the understanding of its role and molecular mechanism in multiple physiological and pathological processes.
Main Body: In this review, we embark on a journey through the dynamic protein folding cycle of TRiC/CCT, unraveling the intricate mechanisms of its substrate selection, recognition, and intriguing folding and assembly processes. In addition to discussing the critical role of TRiC/CCT in maintaining proteostasis, we detail its involvement in cell cycle regulation, apoptosis, autophagy, metabolic control, adaptive immunity and signal transduction processes. Furthermore, we meticulously catalogue a compendium of TRiC-associated diseases, such as neuropathies, cardiovascular diseases and various malignancies. Specifically, we report the roles and molecular mechanisms of TRiC/CCT in regulating cancer formation and progression. Finally, we discuss unresolved issues in TRiC/CCT research, highlighting the efforts required for translation to clinical applications, such as diagnosis and treatment.
Conclusion: This review aims to provide a comprehensive view of TRiC/CCT for researchers to inspire further investigations and explorations of potential translational possibilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870801 | PMC |
http://dx.doi.org/10.1002/ctm2.1592 | DOI Listing |
Gene
March 2025
College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China. Electronic address:
Nosema bombycis, the causative agent of pebrine disease, poses a significant threat to the silkworm industry due to its negative impact on silkworm health and productivity. The chaperonin-containing tailless complex polypeptide (CCT) plays a crucial role in protein folding, and its β subunit (CCTβ) is essential for the proper folding of cytoskeletal proteins, such as actin and tubulin. In this study, we cloned and expressed the NbCCTβ gene from N.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
April 2024
Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
Nature
January 2025
Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany.
The ring-shaped chaperonin T-complex protein ring complex (TRiC; also known as chaperonin containing TCP-1, CCT) is an ATP-driven protein-folding machine that is essential for maintenance of cellular homeostasis. Its dysfunction is related to cancer and neurodegenerative disease. Despite its importance, how TRiC works in the cell remains unclear.
View Article and Find Full Text PDFFunct Integr Genomics
December 2024
Department of Infectious Disease, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, No.20 Jinyu Road, Yubei District, Chongqing, 401122, China.
Metastasis is responsible for approximately 90% of lethality from solid tumors. Metabolic abnormalities are one of the key characteristics of tumor cells, closely associated with tumorigenesis and progression. The de novo synthesis pathway of serine is a key metabolic bypass in glycolysis, which could provide material and energy basis for the rapid proliferation of tumor cells by mediating one-carbon metabolism.
View Article and Find Full Text PDFNeurochem Res
November 2024
Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea.
Chaperonin containing TCP1 (CCT) is an essential protein that controls proteostasis following spinal cord damage. In particular, CCT2 plays an important role in neuronal death in various neurological disorders; however, few studies have investigated the effects of CCT2 on ischemic damage in the spinal cord. In the present study, we synthesized a cell-permeable Tat-CCT2 fusion protein and observed its effects on HO-induced oxidative damage in NSC34 motoneuron-like cells and in the spinal cord after ischemic injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!