Confinement allows macromolecules and biomacromolecules to attain arrangements typically unachievable through conventional self-assembly processes. In the field of block copolymers, confinement has been achieved by preparing thin films and controlled solvent evaporation through the use of emulsions. A significant advantage of the confinement-driven self-assembly process is its ability to enable block copolymers to form particles with complex internal morphologies, which would otherwise be inaccessible. Here, we show that liquid-liquid phase separation (LLPS) can induce confinement during the self-assembly of a model block copolymer system. Since this confinement is driven by the block copolymers' tendency to undergo LLPS, we define this confinement type as auto-confinement. This study adds to the growing understanding of how LLPS influences block copolymer self-assembly and provides a new method to achieve confinement driven self-assembly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm01617j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!